메뉴 건너뛰기




Volumn 36, Issue 9, 2008, Pages 781-787

Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network (ANN)

Author keywords

Activated sludge model; Artificial neural network; Chemical oxygen demand; Modeling; Wastewater treatment plant

Indexed keywords

ACTIVATED SLUDGE; ARTIFICIAL NEURAL NETWORK; CARBON; CHEMICAL OXYGEN DEMAND; COMPUTER SIMULATION; CONCENTRATION (COMPOSITION); EFFLUENT; MODEL TEST; NUMERICAL MODEL; PERFORMANCE ASSESSMENT; REMEDIATION;

EID: 74749103360     PISSN: 18630650     EISSN: 18630669     Source Type: Journal    
DOI: 10.1002/clen.200700155     Document Type: Article
Times cited : (30)

References (38)
  • 1
    • 0036216028 scopus 로고    scopus 로고
    • The Use of Mathematical Models in Teaching Wastewater Treatment Engineering
    • E. Morgenroth, E. Arvin, P. Vanrolleghem, The Use of Mathematical Models in Teaching Wastewater Treatment Engineering, Water Sci. Technol. 2002, 45 (6), 229-233.
    • (2002) Water Sci. Technol , vol.45 , Issue.6 , pp. 229-233
    • Morgenroth, E.1    Arvin, E.2    Vanrolleghem, P.3
  • 2
    • 7944231842 scopus 로고    scopus 로고
    • A Guideline for Simulation Studies of Wastewater Treatment Plants
    • G. Langergraber et al., A Guideline for Simulation Studies of Wastewater Treatment Plants, Water Sci. Technol. 2004, 50 (7), 131-138.
    • (2004) Water Sci. Technol , vol.50 , Issue.7 , pp. 131-138
    • Langergraber, G.1
  • 3
    • 7944223229 scopus 로고    scopus 로고
    • Modeling of a Large-Scale Wastewater Treatment Plant for Efficient Operation, Water Sci
    • C. F. Gokcay, G. Sin, Modeling of a Large-Scale Wastewater Treatment Plant for Efficient Operation, Water Sci. Technol. 2004, 50 (7), 123-130.
    • (2004) Technol , vol.50 , Issue.7 , pp. 123-130
    • Gokcay, C.F.1    Sin, G.2
  • 4
    • 14644404401 scopus 로고    scopus 로고
    • Mathematical Modeling of the Activated Sludge Process-The Erzincan Case
    • A. Nuhoglu, B. Keskinler, E. Yildiz, Mathematical Modeling of the Activated Sludge Process-The Erzincan Case, Process Biochem. 2005, 40, 2467-2473.
    • (2005) Process Biochem , vol.40 , pp. 2467-2473
    • Nuhoglu, A.1    Keskinler, B.2    Yildiz, E.3
  • 6
    • 0032949587 scopus 로고    scopus 로고
    • Approaches to Modeling Nutrient Dynamics: ASM2, Simplified Model and Neural Networks
    • H. Zhao, O. J. Hao, T. J. McAvoy, Approaches to Modeling Nutrient Dynamics: ASM2, Simplified Model and Neural Networks, Water Sci. Technol. 1999, 39 (1), 227-234.
    • (1999) Water Sci. Technol , vol.39 , Issue.1 , pp. 227-234
    • Zhao, H.1    Hao, O.J.2    McAvoy, T.J.3
  • 7
    • 0037399368 scopus 로고    scopus 로고
    • Analysis of A Municipal wastewater Treatment Plant Using A Neural Network-Based Pattern Analysis
    • Y.-S. T. Hong, M. R. Rosen, R. Bhamidimarri, Analysis of A Municipal wastewater Treatment Plant Using A Neural Network-Based Pattern Analysis, Water Res. 2003, 37, 1608-1618.
    • (2003) Water Res , vol.37 , pp. 1608-1618
    • Hong Y.-S., T.1    Rosen, M.R.2    Bhamidimarri, R.3
  • 8
    • 22544446792 scopus 로고    scopus 로고
    • New Tool For Evaluation of Performance of Wastewater Treatment Plant: Artificial Neural Network
    • Ö. Çinar, New Tool For Evaluation of Performance of Wastewater Treatment Plant: Artificial Neural Network, Process Biochem. 2005, 408 (9), 2980-2984.
    • (2005) Process Biochem , vol.408 , Issue.9 , pp. 2980-2984
    • Çinar, Ö.1
  • 9
    • 0029900210 scopus 로고    scopus 로고
    • Estimation of Wastewater Process Parameters Using Artificial Neural Networks
    • M. Häck, M. Köhne, Estimation of Wastewater Process Parameters Using Artificial Neural Networks, Water Sci. Technol. 1996, 33 (1), 101-115.
    • (1996) Water Sci. Technol , vol.33 , Issue.1 , pp. 101-115
    • Häck, M.1    Köhne, M.2
  • 10
    • 18144421580 scopus 로고    scopus 로고
    • Prediction of Parameters Characterizing the State of A Pollution Removal Biologic Process
    • S. Grieu, A. Traore, M. Polit, J. Colprim, Prediction of Parameters Characterizing the State of A Pollution Removal Biologic Process, Eng. Appl. Artificial Intelligence 2005, 18, 559-573.
    • (2005) Eng. Appl. Artificial Intelligence , vol.18 , pp. 559-573
    • Grieu, S.1    Traore, A.2    Polit, M.3    Colprim, J.4
  • 11
    • 0032317676 scopus 로고    scopus 로고
    • An Online Wastewater Quality Predication System Based on A Time-Delay Neural Network
    • J. Zhua, J. Zurcher, M. Raoc, M. Q.-H. Menga, An Online Wastewater Quality Predication System Based on A Time-Delay Neural Network, Eng. Appl. Artificial Intelligence 1998, 11, 747-758.
    • (1998) Eng. Appl. Artificial Intelligence , vol.11 , pp. 747-758
    • Zhua, J.1    Zurcher, J.2    Raoc, M.3    Menga M., Q.-H.4
  • 12
    • 0037197169 scopus 로고    scopus 로고
    • Application of Neural Network for Simulation of Upflow Anaerobic Sludge Blanket (UASB) Reactor Performance
    • S. Sinha et al., Application of Neural Network for Simulation of Upflow Anaerobic Sludge Blanket (UASB) Reactor Performance, Biotechnol. Bioeng. 2002, 77 (7), 806-814.
    • (2002) Biotechnol. Bioeng , vol.77 , Issue.7 , pp. 806-814
    • Sinha, S.1
  • 13
    • 0041509130 scopus 로고    scopus 로고
    • Assessing Wastewater Reclamation Potential by Neural Network Model
    • J. C. Chen, N. B. Chang, W. K. Shieh, Assessing Wastewater Reclamation Potential by Neural Network Model, Eng. Appl. Artificial Intelligence 2003, 16, 149-157.
    • (2003) Eng. Appl. Artificial Intelligence , vol.16 , pp. 149-157
    • Chen, J.C.1    Chang, N.B.2    Shieh, W.K.3
  • 14
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of Wastewater Treatment Plant Performance Using Artificial Neural Networks
    • M. M. Hamed, M. G. Khalafallah, E. A. Hassanien, Prediction of Wastewater Treatment Plant Performance Using Artificial Neural Networks, Environ. Model. Software 2004, 19, 919-928.
    • (2004) Environ. Model. Software , vol.19 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 15
    • 34447309364 scopus 로고    scopus 로고
    • Prediction of Chemical Oxygen Demand (COD) Based On Wavelet Decomposition and Neural Networks
    • D. Hanbay, I. Turkoglu, Y. Demir, Prediction of Chemical Oxygen Demand (COD) Based On Wavelet Decomposition and Neural Networks, Clean 2007, 35 (3), 250-254. DOI: 10.1002/clen.200700039.
    • (2007) Clean , vol.35 , Issue.3 , pp. 250-254
    • Hanbay, D.1    Turkoglu, I.2    Demir, Y.3
  • 16
    • 34249743593 scopus 로고    scopus 로고
    • Monitoring of Sequencing Batch Reactor for Nitrogen and Phosphorus Removal Using Neural Networks
    • S. H. Hong, M. W. Lee, D. S. Lee, J. M. Park, Monitoring of Sequencing Batch Reactor for Nitrogen and Phosphorus Removal Using Neural Networks, Biochem. Eng. J. 2007, 35, 365-370.
    • (2007) Biochem. Eng. J , vol.35 , pp. 365-370
    • Hong, S.H.1    Lee, M.W.2    Lee, D.S.3    Park, J.M.4
  • 18
    • 0043011913 scopus 로고    scopus 로고
    • A Neural Network Predictive Control System for Paper Mill Wastewater Treatment
    • G. M. Zeng et al., A Neural Network Predictive Control System for Paper Mill Wastewater Treatment, Eng. Appl. Artificial Intelligence 2003, 16, 121-129.
    • (2003) Eng. Appl. Artificial Intelligence , vol.16 , pp. 121-129
    • Zeng, G.M.1
  • 19
    • 15944400056 scopus 로고    scopus 로고
    • Determination of the Relationship Between Sewage Odour and BOD by Neural Networks
    • G. Onkal-Engin, I. Demir, S. N. Engin, Determination of the Relationship Between Sewage Odour and BOD by Neural Networks, Environ. Model. Software 2005, 20, 843-850.
    • (2005) Environ. Model. Software , vol.20 , pp. 843-850
    • Onkal-Engin, G.1    Demir, I.2    Engin, S.N.3
  • 20
    • 0035024098 scopus 로고    scopus 로고
    • Software Sensor Design for COD Estimation in an Anaerobic Fluidized Bed Reactor
    • C. Aubrun, D. Theilliol, J. Harmand, J. P. Steyer, Software Sensor Design for COD Estimation in an Anaerobic Fluidized Bed Reactor, Water Sci. Technol. 2001, 43 (7), 115-120.
    • (2001) Water Sci. Technol , vol.43 , Issue.7 , pp. 115-120
    • Aubrun, C.1    Theilliol, D.2    Harmand, J.3    Steyer, J.P.4
  • 21
    • 0032843665 scopus 로고    scopus 로고
    • Construction of COD Simulation Model for Activated Sludge Process by Fuzzy Neural Network
    • S. Tomida et al., Construction of COD Simulation Model for Activated Sludge Process by Fuzzy Neural Network, J. Biosci. Bioeng. 1999, 88 (2), 215-220.
    • (1999) J. Biosci. Bioeng , vol.88 , Issue.2 , pp. 215-220
    • Tomida, S.1
  • 22
    • 0033377733 scopus 로고    scopus 로고
    • Neural Fuzzy Modeling of Anaerobic Biological Wastewater Treatment Systems
    • J. H. Tay, X. Zhang, Neural Fuzzy Modeling of Anaerobic Biological Wastewater Treatment Systems, J. Environ. Eng. 1999, 125 (12), 1149-1159.
    • (1999) J. Environ. Eng , vol.125 , Issue.12 , pp. 1149-1159
    • Tay, J.H.1    Zhang, X.2
  • 23
    • 0034256936 scopus 로고    scopus 로고
    • A Fast Predicting Neural Fuzzy Model for High-Rate Anaerobic Wastewater Treatment Systems
    • J. H. Tay, X. Zhang, A Fast Predicting Neural Fuzzy Model for High-Rate Anaerobic Wastewater Treatment Systems, Water Res. 2000, 34 (11), 2849-2860.
    • (2000) Water Res , vol.34 , Issue.11 , pp. 2849-2860
    • Tay, J.H.1    Zhang, X.2
  • 24
    • 34547644268 scopus 로고    scopus 로고
    • Evaluation of Input Variables in Adaptive-Network Based Fuzzy Inference System (Anfis) Modeling for an Anaerobic Wastewater Treatment Plant Under Unsteady Conditions
    • A. Perendeci, S. Arslan, A. Tanyolaç, S. S. Çelebi, Evaluation of Input Variables in Adaptive-Network Based Fuzzy Inference System (Anfis) Modeling for an Anaerobic Wastewater Treatment Plant Under Unsteady Conditions, J. Environ. Eng. 2007, 13 (7), 765-772.
    • (2007) J. Environ. Eng , vol.13 , Issue.7 , pp. 765-772
    • Perendeci, A.1    Arslan, S.2    Tanyolaç, A.3    Çelebi, S.S.4
  • 25
    • 0030663898 scopus 로고    scopus 로고
    • Hybrid Fuzzy Neural Network for Diagnosis - Application to the Anaerobic Treatment of Wine Distillery Wastewater in a Fluidized Bed Reactor
    • J. P. Steyer, D. Rolland, J. C. Bouvier, R. Moletta, Hybrid Fuzzy Neural Network for Diagnosis - Application to the Anaerobic Treatment of Wine Distillery Wastewater in a Fluidized Bed Reactor, Water Sci. Technol. 1997, 36 (6-7), 209-217.
    • (1997) Water Sci. Technol , vol.36 , Issue.6-7 , pp. 209-217
    • Steyer, J.P.1    Rolland, D.2    Bouvier, J.C.3    Moletta, R.4
  • 26
    • 0028969090 scopus 로고
    • Dynamic Modeling of the Activated Sludge Process: Improving Prediction Using Neural Networks
    • M. Cote, B. P. A. Grandjean, P. Lessard, J. Thibault, Dynamic Modeling of the Activated Sludge Process: Improving Prediction Using Neural Networks, Water Res. 1995, 29 (4), 995-1004.
    • (1995) Water Res , vol.29 , Issue.4 , pp. 995-1004
    • Cote, M.1    Grandjean, B.P.A.2    Lessard, P.3    Thibault, J.4
  • 27
    • 18944372441 scopus 로고    scopus 로고
    • Parallel Hybrid Modeling Methods for a Full-Scale Cokes Wastewater Treatment Plant
    • D. S. Lee, P. A. Vanrolleghem, J. M. Park, Parallel Hybrid Modeling Methods for a Full-Scale Cokes Wastewater Treatment Plant, J. Biotechnol. 2005, 115, 317-328.
    • (2005) J. Biotechnol , vol.115 , pp. 317-328
    • Lee, D.S.1    Vanrolleghem, P.A.2    Park, J.M.3
  • 28
    • 0035116656 scopus 로고    scopus 로고
    • Hybrid Modeling of anaerobic wastewater treatment processes
    • A. Karama et al., Hybrid Modeling of anaerobic wastewater treatment processes, Water Sci. Technol. 2001, 43 (1), 43-56.
    • (2001) Water Sci. Technol , vol.43 , Issue.1 , pp. 43-56
    • Karama, A.1
  • 29
    • 0035024096 scopus 로고    scopus 로고
    • Hybrid Neural Modeling of an Anaerobic Digester with Respect to Biological Constraints
    • A. Karama, O. Bernard, J. L. Gouzé, A. Benhammou, D. Dochain, Hybrid Neural Modeling of an Anaerobic Digester with Respect to Biological Constraints, Water Sci. Technol. 2001, 43 (7), 1-8.
    • (2001) Water Sci. Technol , vol.43 , Issue.7 , pp. 1-8
    • Karama, A.1    Bernard, O.2    Gouzé, J.L.3    Benhammou, A.4    Dochain, D.5
  • 31
    • 0026238002 scopus 로고
    • A Dynamic Model of the Clarification-Thickening Process
    • I. Takacs, G. G. Patry, D. Nolasco, A Dynamic Model of the Clarification-Thickening Process, Water Res. 1991, 25 (10), 1263-71.
    • (1991) Water Res , vol.25 , Issue.10 , pp. 1263-71
    • Takacs, I.1    Patry, G.G.2    Nolasco, D.3
  • 32
    • 0027473633 scopus 로고
    • A Rapid Physical-Chemical Method for the Determination of Readily Biodegradable Soluble COD in Municipal Wastewater
    • D. Mamais, D. Jenkins, P. Pitt, A Rapid Physical-Chemical Method for the Determination of Readily Biodegradable Soluble COD in Municipal Wastewater, Water Res. 1993, 27 (1), 195-197.
    • (1993) Water Res , vol.27 , Issue.1 , pp. 195-197
    • Mamais, D.1    Jenkins, D.2    Pitt, P.3
  • 36
    • 31344477101 scopus 로고    scopus 로고
    • Applications of Artificial Neural Networks in Integrated Water Management: Fiction or Future?, Water Sci
    • F. H. Schulze, H. Wolf, H. W. Jansen, P. van der Veer, Applications of Artificial Neural Networks in Integrated Water Management: Fiction or Future?, Water Sci. Technol. 2005, 52 (9), 21-31.
    • (2005) Technol , vol.52 , Issue.9 , pp. 21-31
    • Schulze, F.H.1    Wolf, H.2    Jansen, H.W.3    van der Veer, P.4
  • 38
    • 34447509444 scopus 로고    scopus 로고
    • Grey and Neural Network Prediction of Suspended Solids and Chemical Oxygen Demand in Hospital Wastewater Treatment Plant Effluent
    • T. Y. Pai et al., Grey and Neural Network Prediction of Suspended Solids and Chemical Oxygen Demand in Hospital Wastewater Treatment Plant Effluent, Comput. Chem. Eng. 2007, 31 (10), 1272-1281.
    • (2007) Comput. Chem. Eng , vol.31 , Issue.10 , pp. 1272-1281
    • Pai, T.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.