-
1
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
-
3
-
-
76249131021
-
Symmetry breaking of the zero energy Landau level in bilayer graphene
-
Zhao, Y. et al. Symmetry breaking of the zero energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 066801
-
-
Zhao, Y.1
-
4
-
-
67149121054
-
Direct observation of a widely tunable bandgap in bilayer graphene
-
Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823 (2009).
-
(2009)
Nature
, vol.459
, pp. 820-823
-
-
Zhang, Y.1
-
5
-
-
67651121762
-
Trilayer graphene is a semimetal with a gate-tunable band overlap
-
Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech.4, 383-388 (2009).
-
(2009)
Nature Nanotech.
, vol.4
, pp. 383-388
-
-
Craciun, M.F.1
-
6
-
-
75849164584
-
Electron transport in disordered graphene nanoribbons
-
Han, M. Y. et al. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 056801
-
-
Han, M.Y.1
-
7
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
Han, M. Y. et al. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 206805
-
-
Han, M.Y.1
-
8
-
-
60749130866
-
Energy gaps in etched graphene nanoribbons
-
Stampfe, C. et al. Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 056403
-
-
Stampfe, C.1
-
9
-
-
67650215465
-
Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit
-
Cresti, A. & Roche, S. Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit. Phys. Rev. B 79, 233404 (2009).
-
(2009)
Phys. Rev. B
, vol.79
, pp. 233404
-
-
Cresti, A.1
Roche, S.2
-
10
-
-
55849119530
-
Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons
-
Evaldsson, M. , et al. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407(R) (2008).
-
(2008)
Phys. Rev. B
, vol.78
-
-
Evaldsson, M.1
-
11
-
-
60949113491
-
Conductance quantization and transport gaps in disordered graphene nanoribbons
-
Mucciolo, E. R. et al. Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009).
-
(2009)
Phys. Rev. B
, vol.79
, pp. 075407
-
-
Mucciolo, E.R.1
-
12
-
-
38549143679
-
Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects
-
Lherbier, A. et al. Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects. Phys. Rev. Lett. 100, 036803 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 036803
-
-
Lherbier, A.1
-
13
-
-
35948971778
-
Quasiparticle energies and band gaps in graphene nanoribbons
-
Yang, L. et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 186801
-
-
Yang, L.1
-
14
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
Son, Y-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 216803
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
15
-
-
33751110207
-
Half-metallic graphene nanoribbons
-
Son, Y-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347-349 (2006).
-
(2006)
Nature
, vol.444
, pp. 347-349
-
-
Son, Y-W.1
Cohen, M.L.2
Louie, S.G.3
-
16
-
-
0000781318
-
Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
-
Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 17954-17961
-
-
Nakada, K.1
Fujita, M.2
Dresselhaus, G.3
Dresselhaus, M.S.4
-
17
-
-
59949098337
-
The electronic properties of graphene
-
CastroNeto, H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109-163 (2009).
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109-163
-
-
CastroNeto, H.1
-
18
-
-
77952289665
-
Facile synthesis of high-quality graphene nanoribbons
-
Jiao, L. et al. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321-325 (2010).
-
(2010)
Nature Nanotech.
, vol.5
, pp. 321-325
-
-
Jiao, L.1
-
19
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
Li, X. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008).
-
(2008)
Science
, vol.319
, pp. 1229-1232
-
-
Li, X.1
-
20
-
-
44149119344
-
Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
-
Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 206803
-
-
Wang, X.1
-
21
-
-
65249185111
-
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
-
Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872-877 (2009).
-
(2009)
Nature
, vol.458
, pp. 872-877
-
-
Kosynkin, D.V.1
-
22
-
-
77951715589
-
Low-defect graphene oxide nanoribbons from multiwalled carbon nanotubes
-
Higginbotham, A. L. et al. Low-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4, 2059-2069 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 2059-2069
-
-
Higginbotham, A.L.1
-
23
-
-
33144487494
-
Superconductivity in entirely end-bonded multiwalled carbon nanotubes
-
Takesue, I. et al. Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 96, 057001 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 057001
-
-
Takesue, I.1
-
24
-
-
77749323301
-
Graphene nanomesh
-
Bail, J. et al. Graphene nanomesh. Nature Nanotech. 5, 190-194 (2010).
-
(2010)
Nature Nanotech.
, vol.5
, pp. 190-194
-
-
Bail, J.1
-
25
-
-
63749092546
-
Graphene at the edge: Stability and dynamics
-
Girit, C. O. et al. Graphene at the edge: Stability and dynamics. Science 323, 1705-1708 (2009).
-
(2009)
Science
, vol.323
, pp. 1705-1708
-
-
Girit, C.O.1
-
27
-
-
0035099231
-
Coulomb blockade related to a localization effect in a single tunnel-junction carbon nanotubes system
-
Haruyama, J. et al. Coulomb blockade related to a localization effect in a single tunnel-junction carbon nanotubes system. Phys. Rev. B 63, 073406 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 073406
-
-
Haruyama, J.1
-
28
-
-
63449116426
-
Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons
-
Jia, X. M. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701-1705 (2009).
-
(2009)
Science
, vol.323
, pp. 1701-1705
-
-
Jia, X.M.1
-
29
-
-
33644523403
-
Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surface near monoatomic step edges
-
Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surface near monoatomic step edges. Phys. Rev. B 73, 085421 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 085421
-
-
Niimi, Y.1
-
30
-
-
70449523327
-
Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects
-
Cervenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840-844 (2009).
-
(2009)
Nature Phys.
, vol.5
, pp. 840-844
-
-
Cervenka, J.1
Katsnelson, M.I.2
Flipse, C.F.J.3
-
31
-
-
67651154533
-
Mechanism of carbon nanotubes unzipping into graphene ribbons
-
Rangel, N. L., Sotelo, J. C. & Seminario, J. M. Mechanism of carbon nanotubes unzipping into graphene ribbons. J. Chem. Phys. 131, 031105 (2009).
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 031105
-
-
Rangel, N.L.1
Sotelo, J.C.2
Seminario, J.M.3
|