메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages 45-50

Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons

Author keywords

[No Author keywords available]

Indexed keywords

DEFECTS; ELECTRONIC PROPERTIES; ENERGY GAP; GRAPHENE; HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY; NANORIBBONS; NANOTUBES; STOCHASTIC SYSTEMS; YARN;

EID: 78650589840     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2010.249     Document Type: Article
Times cited : (159)

References (31)
  • 1
    • 7444220645 scopus 로고    scopus 로고
    • Electric field effect in atomically thin carbon films
    • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
    • (2004) Science , vol.306 , pp. 666-669
    • Novoselov, K.S.1
  • 3
    • 76249131021 scopus 로고    scopus 로고
    • Symmetry breaking of the zero energy Landau level in bilayer graphene
    • Zhao, Y. et al. Symmetry breaking of the zero energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 066801
    • Zhao, Y.1
  • 4
    • 67149121054 scopus 로고    scopus 로고
    • Direct observation of a widely tunable bandgap in bilayer graphene
    • Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823 (2009).
    • (2009) Nature , vol.459 , pp. 820-823
    • Zhang, Y.1
  • 5
    • 67651121762 scopus 로고    scopus 로고
    • Trilayer graphene is a semimetal with a gate-tunable band overlap
    • Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech.4, 383-388 (2009).
    • (2009) Nature Nanotech. , vol.4 , pp. 383-388
    • Craciun, M.F.1
  • 6
    • 75849164584 scopus 로고    scopus 로고
    • Electron transport in disordered graphene nanoribbons
    • Han, M. Y. et al. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 056801
    • Han, M.Y.1
  • 7
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. Y. et al. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 206805
    • Han, M.Y.1
  • 8
    • 60749130866 scopus 로고    scopus 로고
    • Energy gaps in etched graphene nanoribbons
    • Stampfe, C. et al. Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009).
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 056403
    • Stampfe, C.1
  • 9
    • 67650215465 scopus 로고    scopus 로고
    • Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit
    • Cresti, A. & Roche, S. Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit. Phys. Rev. B 79, 233404 (2009).
    • (2009) Phys. Rev. B , vol.79 , pp. 233404
    • Cresti, A.1    Roche, S.2
  • 10
    • 55849119530 scopus 로고    scopus 로고
    • Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons
    • Evaldsson, M. , et al. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407(R) (2008).
    • (2008) Phys. Rev. B , vol.78
    • Evaldsson, M.1
  • 11
    • 60949113491 scopus 로고    scopus 로고
    • Conductance quantization and transport gaps in disordered graphene nanoribbons
    • Mucciolo, E. R. et al. Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009).
    • (2009) Phys. Rev. B , vol.79 , pp. 075407
    • Mucciolo, E.R.1
  • 12
    • 38549143679 scopus 로고    scopus 로고
    • Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects
    • Lherbier, A. et al. Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects. Phys. Rev. Lett. 100, 036803 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 036803
    • Lherbier, A.1
  • 13
    • 35948971778 scopus 로고    scopus 로고
    • Quasiparticle energies and band gaps in graphene nanoribbons
    • Yang, L. et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 186801
    • Yang, L.1
  • 15
    • 33751110207 scopus 로고    scopus 로고
    • Half-metallic graphene nanoribbons
    • Son, Y-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347-349 (2006).
    • (2006) Nature , vol.444 , pp. 347-349
    • Son, Y-W.1    Cohen, M.L.2    Louie, S.G.3
  • 16
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 17954-17961
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 17
    • 59949098337 scopus 로고    scopus 로고
    • The electronic properties of graphene
    • CastroNeto, H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109-163 (2009).
    • (2009) Rev. Mod. Phys. , vol.81 , pp. 109-163
    • CastroNeto, H.1
  • 18
    • 77952289665 scopus 로고    scopus 로고
    • Facile synthesis of high-quality graphene nanoribbons
    • Jiao, L. et al. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321-325 (2010).
    • (2010) Nature Nanotech. , vol.5 , pp. 321-325
    • Jiao, L.1
  • 19
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • Li, X. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008).
    • (2008) Science , vol.319 , pp. 1229-1232
    • Li, X.1
  • 20
    • 44149119344 scopus 로고    scopus 로고
    • Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
    • Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 206803
    • Wang, X.1
  • 21
    • 65249185111 scopus 로고    scopus 로고
    • Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
    • Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872-877 (2009).
    • (2009) Nature , vol.458 , pp. 872-877
    • Kosynkin, D.V.1
  • 22
    • 77951715589 scopus 로고    scopus 로고
    • Low-defect graphene oxide nanoribbons from multiwalled carbon nanotubes
    • Higginbotham, A. L. et al. Low-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4, 2059-2069 (2010).
    • (2010) ACS Nano , vol.4 , pp. 2059-2069
    • Higginbotham, A.L.1
  • 23
    • 33144487494 scopus 로고    scopus 로고
    • Superconductivity in entirely end-bonded multiwalled carbon nanotubes
    • Takesue, I. et al. Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 96, 057001 (2006).
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 057001
    • Takesue, I.1
  • 24
    • 77749323301 scopus 로고    scopus 로고
    • Graphene nanomesh
    • Bail, J. et al. Graphene nanomesh. Nature Nanotech. 5, 190-194 (2010).
    • (2010) Nature Nanotech. , vol.5 , pp. 190-194
    • Bail, J.1
  • 25
    • 63749092546 scopus 로고    scopus 로고
    • Graphene at the edge: Stability and dynamics
    • Girit, C. O. et al. Graphene at the edge: Stability and dynamics. Science 323, 1705-1708 (2009).
    • (2009) Science , vol.323 , pp. 1705-1708
    • Girit, C.O.1
  • 27
    • 0035099231 scopus 로고    scopus 로고
    • Coulomb blockade related to a localization effect in a single tunnel-junction carbon nanotubes system
    • Haruyama, J. et al. Coulomb blockade related to a localization effect in a single tunnel-junction carbon nanotubes system. Phys. Rev. B 63, 073406 (2001).
    • (2001) Phys. Rev. B , vol.63 , pp. 073406
    • Haruyama, J.1
  • 28
    • 63449116426 scopus 로고    scopus 로고
    • Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons
    • Jia, X. M. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701-1705 (2009).
    • (2009) Science , vol.323 , pp. 1701-1705
    • Jia, X.M.1
  • 29
    • 33644523403 scopus 로고    scopus 로고
    • Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surface near monoatomic step edges
    • Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surface near monoatomic step edges. Phys. Rev. B 73, 085421 (2006).
    • (2006) Phys. Rev. B , vol.73 , pp. 085421
    • Niimi, Y.1
  • 30
    • 70449523327 scopus 로고    scopus 로고
    • Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects
    • Cervenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840-844 (2009).
    • (2009) Nature Phys. , vol.5 , pp. 840-844
    • Cervenka, J.1    Katsnelson, M.I.2    Flipse, C.F.J.3
  • 31
    • 67651154533 scopus 로고    scopus 로고
    • Mechanism of carbon nanotubes unzipping into graphene ribbons
    • Rangel, N. L., Sotelo, J. C. & Seminario, J. M. Mechanism of carbon nanotubes unzipping into graphene ribbons. J. Chem. Phys. 131, 031105 (2009).
    • (2009) J. Chem. Phys. , vol.131 , pp. 031105
    • Rangel, N.L.1    Sotelo, J.C.2    Seminario, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.