-
1
-
-
13244267227
-
Information theory and predictability for low-frequency variability
-
Abramov, R. V., A. J. Majda, and R. Kleeman, 2005: Information theory and predictability for low-frequency variability. J. Atmos. Sci., 62, 65-87.
-
(2005)
J. Atmos. Sci.
, vol.62
, pp. 65-87
-
-
Abramov, R.V.1
Majda, A.J.2
Kleeman, R.3
-
2
-
-
4143094904
-
Can climate trends be calculated from reanalysis data?
-
doi:10.1029/2004jd004536
-
Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004jd004536.
-
(2004)
J. Geophys. Res.
, vol.109
-
-
Bengtsson, L.1
Hagemann, S.2
Hodges, K.I.3
-
3
-
-
0033371713
-
Large-scale, low-frequency variability in wind-driven ocean gyres
-
Berloff, P. S., and J. C. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29, 1925-1949.
-
(1999)
J. Phys. Oceanogr.
, vol.29
, pp. 1925-1949
-
-
Berloff, P.S.1
McWilliams, J.C.2
-
4
-
-
78650576963
-
Two limits of initial-value decadal predictability in a CGCM
-
Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate, 23, 6292-6311.
-
(2010)
J. Climate
, vol.23
, pp. 6292-6311
-
-
Branstator, G.1
Teng, H.2
-
5
-
-
0036795878
-
Climate predictability on interannual to decadal time scales: The initial value problem
-
doi:10.1007/s00382-002-0254-8
-
Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn., 19, 671-692, doi:10.1007/s00382-002-0254-8.
-
(2002)
Climate Dyn.
, vol.19
, pp. 671-692
-
-
Collins, M.1
-
7
-
-
33748572951
-
Fitting timeseries by continuous-time Markov chains: A quadratic programming approach
-
doi:10.1016/j.jcp.2006.01.045
-
Crommelin, D. T., and E. Vanden-Eijnden, 2006: Fitting timeseries by continuous-time Markov chains: A quadratic programming approach. J. Comput. Phys., 217, 782-805, doi:10.1016/j.jcp.2006.01.045.
-
(2006)
J. Comput. Phys.
, vol.217
, pp. 782-805
-
-
Crommelin, D.T.1
Vanden-Eijnden, E.2
-
8
-
-
8744221249
-
Predictability and information theory. Part I: Measures of predictability
-
DelSole, T., 2004: Predictability and information theory. Part I: Measures of predictability. J. Atmos. Sci., 61, 2425-2440.
-
(2004)
J. Atmos. Sci.
, vol.61
, pp. 2425-2440
-
-
DelSole, T.1
-
9
-
-
27744599207
-
Predictability and information theory. Part II: Imperfect models
-
DelSole, T., 2005: Predictability and information theory. Part II: Imperfect models. J. Atmos. Sci., 62, 3368-3381.
-
(2005)
J. Atmos. Sci.
, vol.62
, pp. 3368-3381
-
-
DelSole, T.1
-
10
-
-
77958100090
-
Model fidelity versus skill in seasonal forecasting
-
DelSole, T., and J. Shukla, 2010: Model fidelity versus skill in seasonal forecasting. J. Climate, 23, 4794-4806.
-
(2010)
J. Climate
, vol.23
, pp. 4794-4806
-
-
DelSole, T.1
Shukla, J.2
-
12
-
-
44449178720
-
A hidden Markov model perspective on regimes and metastability in atmospheric flows
-
Franzke, C., D. Crommelin, A. Fischer, and A. J. Majda, 2008: A hidden Markov model perspective on regimes and metastability in atmospheric flows. J. Climate, 21, 1740-1757.
-
(2008)
J. Climate
, vol.21
, pp. 1740-1757
-
-
Franzke, C.1
Crommelin, D.2
Fischer, A.3
Majda, A.J.4
-
13
-
-
69949114819
-
Systematic metastable regime identification in an AGCM
-
Franzke, C., I. Horenko, A. J. Majda, and R. Klein, 2009: Systematic metastable regime identification in an AGCM. J. Atmos. Sci., 66, 1997-2012.
-
(2009)
J. Atmos. Sci.
, vol.66
, pp. 1997-2012
-
-
Franzke, C.1
Horenko, I.2
Majda, A.J.3
Klein, R.4
-
15
-
-
77955426833
-
Atest model for fluctuation-dissipation theorems with time-periodic statistics
-
doi:10.1016/j.physd.2010.05.009
-
Gershgorin, B., and A. J. Majda, 2010: Atest model for fluctuation-dissipation theorems with time-periodic statistics. Physica D, 239, 1741-1757, doi:10.1016/j.physd.2010.05.009.
-
(2010)
Physica D
, vol.239
, pp. 1741-1757
-
-
Gershgorin, B.1
Majda, A.J.2
-
16
-
-
0037133238
-
"Waves" vs. "particles" in the atmosphere's phase space: A pathway to long-range forecasting?
-
doi:10.1073/pnas.012580899
-
Ghil, M., and A. W. Robertson, 2002: "Waves" vs. "particles" in the atmosphere's phase space: A pathway to long-range forecasting? Proc. Natl. Acad. Sci. USA, 99 (Suppl.), 2493-2500, doi:10.1073/pnas.012580899.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, Issue.SUPPL.
, pp. 2493-2500
-
-
Ghil, M.1
Robertson, A.W.2
-
17
-
-
84858613589
-
Quantifying the predictive skill in long-range forecasting. Part I: Coarse-grained predictions in a simple ocean model
-
Giannakis, D., and A. J. Majda, 2012: Quantifying the predictive skill in long-range forecasting. Part I: Coarse-grained predictions in a simple ocean model. J. Climate, 25, 1793-1813.
-
(2012)
J. Climate
, vol.25
, pp. 1793-1813
-
-
Giannakis, D.1
Majda, A.J.2
-
18
-
-
45849084703
-
On simultaneous data-based dimension reduction and hidden phase identification
-
Horenko, I., 2008: On simultaneous data-based dimension reduction and hidden phase identification. J. Atmos. Sci., 65, 1941-1954.
-
(2008)
J. Atmos. Sci.
, vol.65
, pp. 1941-1954
-
-
Horenko, I.1
-
19
-
-
69949148733
-
On robust estimation of low-frequency variability trends in discrete Markovian sequences of atmospheric circulation patterns
-
Horenko, I., 2009: On robust estimation of low-frequency variability trends in discrete Markovian sequences of atmospheric circulation patterns. J. Atmos. Sci., 66, 2059-2072.
-
(2009)
J. Atmos. Sci.
, vol.66
, pp. 2059-2072
-
-
Horenko, I.1
-
20
-
-
77955587762
-
On the identification of nonstationary factor models and their application to atmospheric data analysis
-
Horenko, I. 2010: On the identification of nonstationary factor models and their application to atmospheric data analysis. J. Atmos. Sci., 67, 1559-1574.
-
(2010)
J. Atmos. Sci.
, vol.67
, pp. 1559-1574
-
-
Horenko, I.1
-
21
-
-
84858613302
-
-
Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., ESA Publ. WPP-306
-
Hurrell, J. W., and Coauthors, 2010: Decadal climate prediction: Opportunities and challenges. Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, 21-25.
-
(2010)
Decadal climate prediction: Opportunities and challenges
, vol.2
, pp. 21-25
-
-
Hurrell, J.W.1
-
22
-
-
11944266539
-
Information theory and statistical mechanics
-
Jaynes, E. T., 1957: Information theory and statistical mechanics. Phys. Rev., 106, 620-630.
-
(1957)
Phys. Rev.
, vol.106
, pp. 620-630
-
-
Jaynes, E.T.1
-
23
-
-
68349153730
-
Relative entropy measures of multivariate dependence
-
Joe, H., 1989: Relative entropy measures of multivariate dependence. J. Amer. Stat. Assoc., 84, 157-164.
-
(1989)
J. Amer. Stat. Assoc.
, vol.84
, pp. 157-164
-
-
Joe, H.1
-
24
-
-
43049138035
-
Advancing decadal-scale climate prediction in the North Atlantic sector
-
doi:10.1038/nature06921
-
Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 84-88, doi:10.1038/nature06921.
-
(2008)
Nature
, vol.453
, pp. 84-88
-
-
Keenlyside, N.S.1
Latif, M.2
Jungclaus, J.3
Kornblueh, L.4
Roeckner, E.5
-
25
-
-
0036646756
-
Measuring dynamical prediction utility using relative entropy
-
Kleeman, R., 2002: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 59, 2057-2072.
-
(2002)
J. Atmos. Sci.
, vol.59
, pp. 2057-2072
-
-
Kleeman, R.1
-
26
-
-
84858596633
-
-
Preprints, Mathematical and Statistical Approaches to Climate Modelling and Prediction, Cambridge, United Kingdom, Isaac Newton Institute for Mathematical Sciences, NI10063, Available online at
-
Kleeman, R., 2010: Information theory and dynamical system predictability. Preprints, Mathematical and Statistical Approaches to Climate Modelling and Prediction, Cambridge, United Kingdom, Isaac Newton Institute for Mathematical Sciences, NI10063, 33 pp. [Available online at http://www.newton.ac.uk/preprints/NI10063.pdf.]
-
(2010)
Information theory and dynamical system predictability
, pp. 33
-
-
Kleeman, R.1
-
28
-
-
0009757387
-
Information theory and climate prediction
-
Leung, L.-Y., and G. R. North, 1990: Information theory and climate prediction. J. Climate, 3, 5-14.
-
(1990)
J. Climate
, vol.3
, pp. 5-14
-
-
Leung, L.-Y.1
North, G.R.2
-
29
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
L. M. Le Cam and J. Neyman, Eds., Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press
-
MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Statistics, L. M. Le Cam and J. Neyman, Eds., Vol. 1, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 281-287.
-
(1967)
Statistics
, vol.1
, pp. 281-287
-
-
MacQueen, J.1
-
30
-
-
77957005765
-
Quantifying uncertainty in climate change science through empirical information theory
-
doi:10.1073/pnas.1007009107
-
Majda, A. J., and B. Gershgorin, 2010: Quantifying uncertainty in climate change science through empirical information theory. Proc. Natl. Acad. Sci. USA, 107, 14 958-14 963, doi:10.1073/pnas.1007009107.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 14958-14963
-
-
Majda, A.J.1
Gershgorin, B.2
-
31
-
-
77949669181
-
Linear response theory for statistical ensembles in complex systems with time-periodic forcing
-
Majda, A. J., and X. Wang, 2010: Linear response theory for statistical ensembles in complex systems with time-periodic forcing. Commun. Math. Sci., 8, 145-172.
-
(2010)
Commun. Math. Sci.
, vol.8
, pp. 145-172
-
-
Majda, A.J.1
Wang, X.2
-
32
-
-
79961230409
-
Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error
-
doi:10.1073/pnas.1108132108
-
Majda, A. J., and B. Gershgorin, 2011: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci. USA, 108, 12 599-12 604, doi:10.1073/pnas.1108132108.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 12599-12604
-
-
Majda, A.J.1
Gershgorin, B.2
-
33
-
-
8744297806
-
A mathematical framework for predictability through relative entropy
-
Majda, A. J., R. Kleeman, and D. Cai, 2002: A mathematical framework for predictability through relative entropy. Methods Appl. Anal., 9, 425-444.
-
(2002)
Methods Appl. Anal.
, vol.9
, pp. 425-444
-
-
Majda, A.J.1
Kleeman, R.2
Cai, D.3
-
34
-
-
33645096317
-
-
American Mathematical Society
-
Majda, A. J., R. V. Abramov, and M. J. Grote, 2005: Information Theory and Stochastics for Multiscale Nonlinear Systems. CRM Monogr., Vol. 25, American Mathematical Society, 133 pp.
-
(2005)
Information Theory and Stochastics for Multiscale Nonlinear Systems. CRM Monogr.
, vol.25
, pp. 133
-
-
Majda, A.J.1
Abramov, R.V.2
Grote, M.J.3
-
35
-
-
33744791821
-
Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model
-
doi:10.1073/pnas.0602641103
-
Majda, A. J., C. L. Franzke, A. Fischer, and D. T. Crommelin, 2006: Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model. Proc. Natl. Acad. Sci. USA, 103, 8309-8314, doi:10.1073/pnas.0602641103.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 8309-8314
-
-
Majda, A.J.1
Franzke, C.L.2
Fischer, A.3
Crommelin, D.T.4
-
36
-
-
62649123683
-
Normal forms for reduced stochastic climate models
-
doi:10.1073/pnas.0900173106
-
Majda, A. J., C. L. Franzke, and D. Crommelin, 2009: Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. USA, 106, 3649-3653, doi:10.1073/pnas.0900173106.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 3649-3653
-
-
Majda, A.J.1
Franzke, C.L.2
Crommelin, D.3
-
37
-
-
0029730521
-
Phenomenology of the low-frequency variability in a reduced-gravity quasigeostrophic double-gyre model
-
McCalpin, J. D., and D. B. Haidvogel, 1996: Phenomenology of the low-frequency variability in a reduced-gravity quasigeostrophic double-gyre model. J. Phys. Oceanogr., 26, 739-752.
-
(1996)
J. Phys. Oceanogr.
, vol.26
, pp. 739-752
-
-
McCalpin, J.D.1
Haidvogel, D.B.2
-
38
-
-
68749111016
-
Decadal prediction: Can it be skillful?
-
Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 1467-1485.
-
(2009)
Bull. Amer. Meteor. Soc.
, vol.90
, pp. 1467-1485
-
-
Meehl, G.A.1
-
39
-
-
35348831744
-
Generator estimation of Markov jump processes
-
doi:10.1016/j.jcp.2007.07.032
-
Metzner, P., E. Dittmer, T. Jahnke, and C. Schütte, 2007: Generator estimation of Markov jump processes. J. Comput. Phys., 227, 353-375, doi:10.1016/j.jcp.2007.07.032.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 353-375
-
-
Metzner, P.1
Dittmer, E.2
Jahnke, T.3
Schütte, C.4
-
40
-
-
0024874304
-
Random forcing and forecasting using principal oscillation pattern analysis
-
Penland, C., 1989: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Rev., 117, 2165-2185.
-
(1989)
Mon. Wea. Rev.
, vol.117
, pp. 2165-2185
-
-
Penland, C.1
-
41
-
-
68749116591
-
Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic
-
Pohlmann, H., J. H. Jungclaus, A. Köhl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 3926-3938.
-
(2009)
J. Climate
, vol.22
, pp. 3926-3938
-
-
Pohlmann, H.1
Jungclaus, J.H.2
Köhl, A.3
Stammer, D.4
Marotzke, J.5
-
42
-
-
43449087894
-
How well do coupled models simulate today's climate?
-
Reichler, T., and J. Kim, 2008a: How well do coupled models simulate today's climate? Bull. Amer. Meteor. Soc., 89, 303-311.
-
(2008)
Bull. Amer. Meteor. Soc.
, vol.89
, pp. 303-311
-
-
Reichler, T.1
Kim, J.2
-
43
-
-
43449084941
-
Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model
-
doi:10.1029/2007jd009278
-
Reichler, T., and J. Kim, 2008b: Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J. Geophys. Res., 113, D05106, doi:10.1029/2007jd009278.
-
(2008)
J. Geophys. Res.
, vol.113
-
-
Reichler, T.1
Kim, J.2
-
44
-
-
0036612028
-
Evaluating probabilistic forecasts using information theory
-
Roulston, M., and L. Smith, 2002: Evaluating probabilistic forecasts using information theory. Mon. Wea. Rev., 130, 1653-1660.
-
(2002)
Mon. Wea. Rev.
, vol.130
, pp. 1653-1660
-
-
Roulston, M.1
Smith, L.2
-
45
-
-
0033208415
-
Aconceptual framework for predictability studies
-
Schneider, T., and S. M. Griffies, 1999: Aconceptual framework for predictability studies. J. Climate, 12, 3133-3155.
-
(1999)
J. Climate
, vol.12
, pp. 3133-3155
-
-
Schneider, T.1
Griffies, S.M.2
-
46
-
-
34547903564
-
Improved surface temperature prediction for the coming decade from a global circulation model
-
doi:10.1126/science. 1139540
-
Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global circulation model. Science, 317, 796-799, doi:10.1126/science. 1139540.
-
(2007)
Science
, vol.317
, pp. 796-799
-
-
Smith, D.M.1
Cusack, S.2
Colman, A.W.3
Folland, C.K.4
Harris, G.R.5
Murphy, J.M.6
-
47
-
-
79251571111
-
Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction
-
Solomon, A., and Coauthors, 2011: Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction. Bull. Amer. Meteor. Soc., 92, 141-156.
-
(2011)
Bull. Amer. Meteor. Soc.
, vol.92
, pp. 141-156
-
-
Solomon, A.1
-
48
-
-
79954598426
-
Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM
-
doi:10.1007/s00382-010-0749-7
-
Teng, H., and G. Branstator, 2010: Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM. Climate Dyn., 36, 1813-1834, doi:10.1007/s00382-010-0749-7.
-
(2010)
Climate Dyn.
, vol.36
, pp. 1813-1834
-
-
Teng, H.1
Branstator, G.2
-
49
-
-
34248634615
-
A Bayesian tutorial for data assimilation
-
doi:10.1016/j.physd.2006.09.017
-
Wikle, C. K., and L. M. Berliner, 2007: A Bayesian tutorial for data assimilation. Physica D, 230, 1-16, doi:10.1016/j.physd.2006.09.017.
-
(2007)
Physica D
, vol.230
, pp. 1-16
-
-
Wikle, C.K.1
Berliner, L.M.2
-
50
-
-
0032409329
-
Hierarchical Bayesian spacetime models
-
doi:10.1023/a:1009662704779
-
Wikle, C. K., L. M. Berliner, and N. Cressie, 1998: Hierarchical Bayesian spacetime models. Environ. Ecol. Stat., 5, 117-154, doi:10.1023/a:1009662704779.
-
(1998)
Environ. Ecol. Stat.
, vol.5
, pp. 117-154
-
-
Wikle, C.K.1
Berliner, L.M.2
Cressie, N.3
|