-
4
-
-
34247849152
-
Training a support vector machine in the primal
-
O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155-1178, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
5
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling
-
N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. SMOTE: synthetic minority over-sampling. Journal of Artificial Intelligence Research, 16(1):321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
6
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N.V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1-6, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
7
-
-
9444297357
-
SMOTEBoost: Improving prediction of the minority class in boosting
-
N.V. Chawla, A. Lazarevic, L.O. Hall, and K.W. Bowyer. SMOTEBoost: Improving prediction of the minority class in boosting. Lecture notes in computer science, pages 107-119, 2003.
-
(2003)
Lecture Notes in Computer Science
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
9
-
-
0036643072
-
Logistic regression, AdaBoost and bregman distances
-
M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48(1):253-285, 2002.
-
(2002)
Machine Learning
, vol.48
, Issue.1
, pp. 253-285
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
11
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
12
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. Liblinear: A library for large linear classification. The Journal of Machine Learning Research, 9:1871-1874, 2008.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
14
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1):389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
17
-
-
10444284324
-
The sampling distribution of the coefficient of variation
-
W.A. Hendricks and K.W. Robey. The sampling distribution of the coefficient of variation. The Annals of Mathematical Statistics, 7(3):129-132, 1936.
-
(1936)
The Annals of Mathematical Statistics
, vol.7
, Issue.3
, pp. 129-132
-
-
Hendricks, W.A.1
Robey, K.W.2
-
22
-
-
84880102914
-
Integrating classification and association rule mining
-
B. Liu, W. Hsu, Y. Ma, A.A. Freitas, and J. Li. Integrating Classification and Association Rule Mining. IEEE Transactions on Knowledge and Data Engineering, 18:460-471.
-
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, pp. 460-471
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
Freitas, A.A.4
Li, J.5
-
23
-
-
84873579825
-
A robust decision tree algorithms for imbalanced data sets
-
W. Liu, S. Chawla, D.A. Cieslak, and N.V. Chawla. A Robust Decision Tree Algorithms for Imbalanced Data Sets. In Proceedings of the Tenth SIAM International Conference on Data Mining, pages 766-777, 2010.
-
(2010)
Proceedings of the Tenth SIAM International Conference on Data Mining
, pp. 766-777
-
-
Liu, W.1
Chawla, S.2
Cieslak, D.A.3
Chawla, N.V.4
-
24
-
-
58149267692
-
Using median regression to obtain adjusted estimates of Central tendency for skewed laboratory and epidemiologic data
-
K.M. McGreevy, S.R. Lipsitz, J.A. Linder, E. Rimm, and D.G. Hoel. Using median regression to obtain adjusted estimates of central tendency for skewed laboratory and epidemiologic data. Clinical chemistry, 55(1):165-169, 2009.
-
(2009)
Clinical Chemistry
, vol.55
, Issue.1
, pp. 165-169
-
-
McGreevy, K.M.1
Lipsitz, S.R.2
Linder, J.A.3
Rimm, E.4
Hoel, D.G.5
-
26
-
-
76749161402
-
Bundle methods for regularized risk minimization
-
C.H. Teo, SVN Vishwanthan, A.J. Smola, and Q.V. Le. Bundle methods for regularized risk minimization. Journal of Machine Learning Research, 11:311-365, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 311-365
-
-
Teo, C.H.1
Vishwanthan, S.V.N.2
Smola, A.J.3
Le, Q.V.4
-
28
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
V. Vapnik, S.E. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. Advances in neural information processing systems, pages 281-287, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
29
-
-
49749113225
-
Using significant, positively associated and relatively class correlated rules for associative classification of imbalanced datasets
-
F. Verhein and S. Chawla. Using Significant, Positively Associated and Relatively Class Correlated Rules for Associative Classification of Imbalanced Datasets. In Seventh IEEE International Conference on Data Mining, pages 679-684, 2007.
-
(2007)
Seventh IEEE International Conference on Data Mining
, pp. 679-684
-
-
Verhein, F.1
Chawla, S.2
-
30
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
C.K.I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. Learning in graphical models, pages 599-621, 1997.
-
(1997)
Learning in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
31
-
-
84879413846
-
Data mining: Practical machine learning tools and techniques with java implementations
-
I.H. Witten and E. Frank. Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Record, 31(1):76-77, 2002.
-
(2002)
ACM SIGMOD Record
, vol.31
, Issue.1
, pp. 76-77
-
-
Witten, I.H.1
Frank, E.2
-
32
-
-
65449163898
-
Asymmetric support vector machines: Low false-positive learning
-
S.H. Wu, K.P. Lin, C.M. Chen, and M.S. Chen. Asymmetric support vector machines: low false-positive learning. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 749-757, 2008.
-
(2008)
Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 749-757
-
-
Wu, S.H.1
Lin, K.P.2
Chen, C.M.3
Chen, M.S.4
|