메뉴 건너뛰기




Volumn , Issue , 2011, Pages 188-198

A quadratic mean based supervised learning model for managing data skewness

Author keywords

Convex optimization; Data skewness; Quadratic mean

Indexed keywords

CLUSTERING ALGORITHMS; CONVEX OPTIMIZATION; HIGHER ORDER STATISTICS; MACHINE LEARNING; REGRESSION ANALYSIS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 84857182086     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972818.17     Document Type: Conference Paper
Times cited : (19)

References (34)
  • 4
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 9
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and bregman distances
    • M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48(1):253-285, 2002.
    • (2002) Machine Learning , vol.48 , Issue.1 , pp. 253-285
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 14344263547 scopus 로고    scopus 로고
    • Centroid-based document classification: Analysis and experimental results
    • E.H. Han and G. Karypis. Centroid-based document classification: Analysis and experimental results. Principles of Data Mining and Knowledge Discovery, pages 116-123, 2000.
    • (2000) Principles of Data Mining and Knowledge Discovery , pp. 116-123
    • Han, E.H.1    Karypis, G.2
  • 17
    • 10444284324 scopus 로고
    • The sampling distribution of the coefficient of variation
    • W.A. Hendricks and K.W. Robey. The sampling distribution of the coefficient of variation. The Annals of Mathematical Statistics, 7(3):129-132, 1936.
    • (1936) The Annals of Mathematical Statistics , vol.7 , Issue.3 , pp. 129-132
    • Hendricks, W.A.1    Robey, K.W.2
  • 24
    • 58149267692 scopus 로고    scopus 로고
    • Using median regression to obtain adjusted estimates of Central tendency for skewed laboratory and epidemiologic data
    • K.M. McGreevy, S.R. Lipsitz, J.A. Linder, E. Rimm, and D.G. Hoel. Using median regression to obtain adjusted estimates of central tendency for skewed laboratory and epidemiologic data. Clinical chemistry, 55(1):165-169, 2009.
    • (2009) Clinical Chemistry , vol.55 , Issue.1 , pp. 165-169
    • McGreevy, K.M.1    Lipsitz, S.R.2    Linder, J.A.3    Rimm, E.4    Hoel, D.G.5
  • 28
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • V. Vapnik, S.E. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. Advances in neural information processing systems, pages 281-287, 1997.
    • (1997) Advances in Neural Information Processing Systems , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 29
    • 49749113225 scopus 로고    scopus 로고
    • Using significant, positively associated and relatively class correlated rules for associative classification of imbalanced datasets
    • F. Verhein and S. Chawla. Using Significant, Positively Associated and Relatively Class Correlated Rules for Associative Classification of Imbalanced Datasets. In Seventh IEEE International Conference on Data Mining, pages 679-684, 2007.
    • (2007) Seventh IEEE International Conference on Data Mining , pp. 679-684
    • Verhein, F.1    Chawla, S.2
  • 30
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • C.K.I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. Learning in graphical models, pages 599-621, 1997.
    • (1997) Learning in Graphical Models , pp. 599-621
    • Williams, C.K.I.1
  • 31
    • 84879413846 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques with java implementations
    • I.H. Witten and E. Frank. Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Record, 31(1):76-77, 2002.
    • (2002) ACM SIGMOD Record , vol.31 , Issue.1 , pp. 76-77
    • Witten, I.H.1    Frank, E.2
  • 34
    • 0142042364 scopus 로고    scopus 로고
    • Quantile regression: Applications and current research areas
    • K. Yu, Z. Lu, and J. Stander. Quantile regression: applications and current research areas. Journal of the Royal Statistical Society, 52(3):331-350.
    • Journal of the Royal Statistical Society , vol.52 , Issue.3 , pp. 331-350
    • Yu, K.1    Lu, Z.2    Stander, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.