메뉴 건너뛰기




Volumn 218, Issue 13, 2012, Pages 7279-7294

A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions

Author keywords

Differential quadrature method; Gauss Lobatto Chebyshev grid points; Runge Kutta method; Two dimensional telegraph equation

Indexed keywords

DIFFERENTIAL QUADRATURE; DIFFERENTIAL QUADRATURE METHODS; DIRICHLET AND NEUMANN BOUNDARY CONDITIONS; EXACT SOLUTION; GRID POINTS; MULTIDIMENSIONAL PROBLEMS; NUMERICAL RESULTS; NUMERICAL SOLUTION; NUMERICAL TECHNIQUES; SECOND ORDER LINEAR DIFFERENTIAL EQUATION; SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS; TELEGRAPH EQUATION; TEST EXAMPLES;

EID: 84856974041     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.01.006     Document Type: Article
Times cited : (118)

References (27)
  • 1
    • 0343455253 scopus 로고    scopus 로고
    • Digital signal propagation in dispersive media
    • P.M. Jordan, and A. Puri Digital signal propagation in dispersive media J. Appl. Phys. 85 3 1999 1273 1282 (Pubitemid 129614913)
    • (1999) Journal of Applied Physics , vol.85 , Issue.3 , pp. 1273-1282
    • Jordan, P.M.1    Puri, A.2
  • 2
    • 0005145088 scopus 로고
    • Wave splitting of the telegraph equation in R3 and its application to inverse scattering
    • V.H. Weston, and S. He Wave splitting of the telegraph equation in R3 and its application to inverse scattering Inverse Probl. 9 1993 789 812
    • (1993) Inverse Probl. , vol.9 , pp. 789-812
    • Weston, V.H.1    He, S.2
  • 3
    • 54649085091 scopus 로고    scopus 로고
    • Singularly perturved telegraph equations with applications in the random walk theory
    • J. Banasiak, and J.R. Mika Singularly perturved telegraph equations with applications in the random walk theory J. Appl. Math. Stoch. Anal. 11 1 1998 9 28
    • (1998) J. Appl. Math. Stoch. Anal. , vol.11 , Issue.1 , pp. 9-28
    • Banasiak, J.1    Mika, J.R.2
  • 4
    • 0942300277 scopus 로고    scopus 로고
    • An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation
    • R.K. Mohanty An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation Appl. Math. Lett. 17 2004 101105
    • (2004) Appl. Math. Lett. , vol.17 , pp. 101105
    • Mohanty, R.K.1
  • 5
    • 17444391655 scopus 로고    scopus 로고
    • An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
    • DOI 10.1016/j.amc.2004.07.002, PII S0096300304003777
    • R.K. Mohanty An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients Appl. Math. Comput. 165 2005 229 236 (Pubitemid 40537185)
    • (2005) Applied Mathematics and Computation , vol.165 , Issue.1 , pp. 229-236
    • Mohanty, R.K.1
  • 6
    • 77957919532 scopus 로고    scopus 로고
    • Numerical solution of telegraph equation using interpolating scaling functions
    • M. Lakestani, and B.N. Saray Numerical solution of telegraph equation using interpolating scaling functions Comput. Math. Appl. 60 7 2010 1964 1972
    • (2010) Comput. Math. Appl. , vol.60 , Issue.7 , pp. 1964-1972
    • Lakestani, M.1    Saray, B.N.2
  • 7
    • 47049124300 scopus 로고    scopus 로고
    • A numerical method for solving the hyperbolic telegraph equation
    • M. Dehghan, and A. Shokri A numerical method for solving the hyperbolic telegraph equation Numer. Methods Partial Differ. Equat. 24 2008 1080 1093
    • (2008) Numer. Methods Partial Differ. Equat. , vol.24 , pp. 1080-1093
    • Dehghan, M.1    Shokri, A.2
  • 8
    • 50849102362 scopus 로고    scopus 로고
    • High order compact solution of the one-space-dimensional linear hyperbolic equation
    • A. Mohebbi, and M. Dehghan High order compact solution of the one-space-dimensional linear hyperbolic equation Numer. Methods Partial Differ. Equat. 24 2008 1222 1235
    • (2008) Numer. Methods Partial Differ. Equat. , vol.24 , pp. 1222-1235
    • Mohebbi, A.1    Dehghan, M.2
  • 9
    • 67849124107 scopus 로고    scopus 로고
    • The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation
    • M. Dehghan, and M. Lakestani The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation Numer. Methods Partial Differ. Equat. 25 2009 931 938
    • (2009) Numer. Methods Partial Differ. Equat. , vol.25 , pp. 931-938
    • Dehghan, M.1    Lakestani, M.2
  • 10
    • 73449109560 scopus 로고    scopus 로고
    • Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method
    • A. Saadatmandi, and M. Dehghan Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method Numer. Methods Partial Differ. Equat. 26 2010 239 252
    • (2010) Numer. Methods Partial Differ. Equat. , vol.26 , pp. 239-252
    • Saadatmandi, A.1    Dehghan, M.2
  • 11
    • 0035500142 scopus 로고    scopus 로고
    • An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
    • DOI 10.1002/num.1034
    • R.K. Mohanty, and M.K. Jain An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation Numer. Methods Partial Differ. Equat. 7 2001 684 688 (Pubitemid 33655785)
    • (2001) Numerical Methods for Partial Differential Equations , vol.17 , Issue.6 , pp. 684-688
    • Mohanty, R.K.1    Jain, M.K.2
  • 12
    • 0942302128 scopus 로고    scopus 로고
    • An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions
    • DOI 10.1080/00207160211918
    • R.K. Mohanty, M.K. Jain, and U. Arora An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional Int. J. Comput. Math. 79 2002 133 142 (Pubitemid 41710668)
    • (2002) International Journal of Computer Mathematics , vol.79 , Issue.1 , pp. 133-142
    • Mohanty, R.K.1    Jain, M.K.2    Arora, U.3
  • 13
    • 58449133487 scopus 로고    scopus 로고
    • A high order implicit collocation method for the solution of two-dimensional linear hyperbolic equation
    • M. Dehghan, and A. Mehebbi A high order implicit collocation method for the solution of two-dimensional linear hyperbolic equation Numer. Methods Partial Differ. Equat. 25 2009 232 243
    • (2009) Numer. Methods Partial Differ. Equat. , vol.25 , pp. 232-243
    • Dehghan, M.1    Mehebbi, A.2
  • 14
    • 63449085865 scopus 로고    scopus 로고
    • A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions
    • M. Dehghan, and A. Shokri A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions Numer. Methods Partial Differ. Equat. 25 2009 494 506
    • (2009) Numer. Methods Partial Differ. Equat. , vol.25 , pp. 494-506
    • Dehghan, M.1    Shokri, A.2
  • 15
    • 74849107653 scopus 로고    scopus 로고
    • A new unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations
    • R.K. Mohanty A new unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations Int. J. Comput. Math. 86 12 2009 2061 2071
    • (2009) Int. J. Comput. Math. , vol.86 , Issue.12 , pp. 2061-2071
    • Mohanty, R.K.1
  • 16
    • 74449091789 scopus 로고    scopus 로고
    • Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation
    • M. Dehghan, and A. Ghesmati Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation Eng. Anal. Bound. Elem. 34 2010 324 336
    • (2010) Eng. Anal. Bound. Elem. , vol.34 , pp. 324-336
    • Dehghan, M.1    Ghesmati, A.2
  • 17
    • 0002800312 scopus 로고
    • Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations
    • R. Bellman, B.G. Kashef, and J. Casti Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations J. Comput. Phys 10 1972 40 52
    • (1972) J. Comput. Phys , vol.10 , pp. 40-52
    • Bellman, R.1    Kashef, B.G.2    Casti, J.3
  • 18
    • 0024705632 scopus 로고
    • New insights in solving distributed system equations by the quadrature method. I. Analysis
    • DOI 10.1016/0098-1354(89)85051-3
    • J.R. Quan, and C.T. Chang New insights in solving distributed system equations by the quadrature methods-I Comput. Chem. Eng. 13 1989 779 788 (Pubitemid 20620969)
    • (1989) Computers and Chemical Engineering , vol.13 , Issue.7 , pp. 779-788
    • Quan, J.R.1    Chang, C.T.2
  • 19
    • 0024738766 scopus 로고
    • New insights in solving distributed system equations by the quadrature method. II. Numerical experiments
    • DOI 10.1016/0098-1354(89)87043-7
    • J.R. Quan, and C.T. Chang New insights in solving distributed system equations by the quadrature methods-II Comput. Chem. Eng. 13 1989 1017 1024 (Pubitemid 20632558)
    • (1989) Computers and Chemical Engineering , vol.13 , Issue.9 , pp. 1017-1024
    • Quan, J.R.1    Chang, C.-T.2
  • 21
    • 70349970652 scopus 로고    scopus 로고
    • Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method
    • M. Dehghan, and A. Ghesmati Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method Eng. Anal. Bound. Elem. 34 2010 51 59
    • (2010) Eng. Anal. Bound. Elem. , vol.34 , pp. 51-59
    • Dehghan, M.1    Ghesmati, A.2
  • 22
    • 79251549814 scopus 로고    scopus 로고
    • The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
    • M. Dehghan, S.A. Yousefi, and A. Lotfi The use of He's variational iteration method for solving the telegraph and fractional telegraph equations Int. J. Numer. Methods Biomed. Eng. 27 2011 219 231
    • (2011) Int. J. Numer. Methods Biomed. Eng. , vol.27 , pp. 219-231
    • Dehghan, M.1    Yousefi, S.A.2    Lotfi, A.3
  • 23
    • 43249129160 scopus 로고    scopus 로고
    • The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation
    • M. Dehghan, and A. Mohebbi The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation Numer. Methods Partial Differ. Equat. 24 2008 897 910
    • (2008) Numer. Methods Partial Differ. Equat. , vol.24 , pp. 897-910
    • Dehghan, M.1    Mohebbi, A.2
  • 24
    • 32644435892 scopus 로고    scopus 로고
    • Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
    • DOI 10.1016/j.matcom.2005.10.001, PII S0378475405002259
    • M. Dehghan Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Math. Comput. Simul. 71 1 2006 16 30 (Pubitemid 43243672)
    • (2006) Mathematics and Computers in Simulation , vol.71 , Issue.1 , pp. 16-30
    • Dehghan, M.1
  • 25
    • 71049150426 scopus 로고    scopus 로고
    • Differential quadrature method for two dimensional Burgers' equations
    • R.C. Mittal, and Ram Jiwari Differential quadrature method for two dimensional Burgers' equations Int. J. Comput. Methods Eng. Sci. Mech. 10 2009 450 459
    • (2009) Int. J. Comput. Methods Eng. Sci. Mech. , vol.10 , pp. 450-459
    • Mittal, R.C.1    Jiwari, R.2
  • 26
    • 79551629810 scopus 로고    scopus 로고
    • Numerical study of two-dimensional reaction-diffusion Brusselator system
    • R.C. Mittal, and Ram Jiwari Numerical study of two-dimensional reaction-diffusion Brusselator system Appl. Math. Comput. 217 12 2011 5404 5415
    • (2011) Appl. Math. Comput. , vol.217 , Issue.12 , pp. 5404-5415
    • Mittal, R.C.1    Jiwari, R.2
  • 27
    • 84855456958 scopus 로고    scopus 로고
    • Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method
    • R. Jiwari, S. Pandit, and R. C Mittal Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method Comput. Phys. Commun. 183 3 2012 600 616
    • (2012) Comput. Phys. Commun. , vol.183 , Issue.3 , pp. 600-616
    • Jiwari, R.1    Pandit, S.2    Mittal R, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.