-
1
-
-
0343455253
-
Digital signal propagation in dispersive media
-
P.M. Jordan, and A. Puri Digital signal propagation in dispersive media J. Appl. Phys. 85 3 1999 1273 1282 (Pubitemid 129614913)
-
(1999)
Journal of Applied Physics
, vol.85
, Issue.3
, pp. 1273-1282
-
-
Jordan, P.M.1
Puri, A.2
-
2
-
-
0005145088
-
Wave splitting of the telegraph equation in R3 and its application to inverse scattering
-
V.H. Weston, and S. He Wave splitting of the telegraph equation in R3 and its application to inverse scattering Inverse Probl. 9 1993 789 812
-
(1993)
Inverse Probl.
, vol.9
, pp. 789-812
-
-
Weston, V.H.1
He, S.2
-
3
-
-
54649085091
-
Singularly perturved telegraph equations with applications in the random walk theory
-
J. Banasiak, and J.R. Mika Singularly perturved telegraph equations with applications in the random walk theory J. Appl. Math. Stoch. Anal. 11 1 1998 9 28
-
(1998)
J. Appl. Math. Stoch. Anal.
, vol.11
, Issue.1
, pp. 9-28
-
-
Banasiak, J.1
Mika, J.R.2
-
4
-
-
0942300277
-
An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation
-
R.K. Mohanty An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation Appl. Math. Lett. 17 2004 101105
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 101105
-
-
Mohanty, R.K.1
-
5
-
-
17444391655
-
An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
-
DOI 10.1016/j.amc.2004.07.002, PII S0096300304003777
-
R.K. Mohanty An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients Appl. Math. Comput. 165 2005 229 236 (Pubitemid 40537185)
-
(2005)
Applied Mathematics and Computation
, vol.165
, Issue.1
, pp. 229-236
-
-
Mohanty, R.K.1
-
6
-
-
77957919532
-
Numerical solution of telegraph equation using interpolating scaling functions
-
M. Lakestani, and B.N. Saray Numerical solution of telegraph equation using interpolating scaling functions Comput. Math. Appl. 60 7 2010 1964 1972
-
(2010)
Comput. Math. Appl.
, vol.60
, Issue.7
, pp. 1964-1972
-
-
Lakestani, M.1
Saray, B.N.2
-
7
-
-
47049124300
-
A numerical method for solving the hyperbolic telegraph equation
-
M. Dehghan, and A. Shokri A numerical method for solving the hyperbolic telegraph equation Numer. Methods Partial Differ. Equat. 24 2008 1080 1093
-
(2008)
Numer. Methods Partial Differ. Equat.
, vol.24
, pp. 1080-1093
-
-
Dehghan, M.1
Shokri, A.2
-
8
-
-
50849102362
-
High order compact solution of the one-space-dimensional linear hyperbolic equation
-
A. Mohebbi, and M. Dehghan High order compact solution of the one-space-dimensional linear hyperbolic equation Numer. Methods Partial Differ. Equat. 24 2008 1222 1235
-
(2008)
Numer. Methods Partial Differ. Equat.
, vol.24
, pp. 1222-1235
-
-
Mohebbi, A.1
Dehghan, M.2
-
9
-
-
67849124107
-
The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation
-
M. Dehghan, and M. Lakestani The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation Numer. Methods Partial Differ. Equat. 25 2009 931 938
-
(2009)
Numer. Methods Partial Differ. Equat.
, vol.25
, pp. 931-938
-
-
Dehghan, M.1
Lakestani, M.2
-
10
-
-
73449109560
-
Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method
-
A. Saadatmandi, and M. Dehghan Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method Numer. Methods Partial Differ. Equat. 26 2010 239 252
-
(2010)
Numer. Methods Partial Differ. Equat.
, vol.26
, pp. 239-252
-
-
Saadatmandi, A.1
Dehghan, M.2
-
11
-
-
0035500142
-
An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
-
DOI 10.1002/num.1034
-
R.K. Mohanty, and M.K. Jain An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation Numer. Methods Partial Differ. Equat. 7 2001 684 688 (Pubitemid 33655785)
-
(2001)
Numerical Methods for Partial Differential Equations
, vol.17
, Issue.6
, pp. 684-688
-
-
Mohanty, R.K.1
Jain, M.K.2
-
12
-
-
0942302128
-
An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions
-
DOI 10.1080/00207160211918
-
R.K. Mohanty, M.K. Jain, and U. Arora An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional Int. J. Comput. Math. 79 2002 133 142 (Pubitemid 41710668)
-
(2002)
International Journal of Computer Mathematics
, vol.79
, Issue.1
, pp. 133-142
-
-
Mohanty, R.K.1
Jain, M.K.2
Arora, U.3
-
13
-
-
58449133487
-
A high order implicit collocation method for the solution of two-dimensional linear hyperbolic equation
-
M. Dehghan, and A. Mehebbi A high order implicit collocation method for the solution of two-dimensional linear hyperbolic equation Numer. Methods Partial Differ. Equat. 25 2009 232 243
-
(2009)
Numer. Methods Partial Differ. Equat.
, vol.25
, pp. 232-243
-
-
Dehghan, M.1
Mehebbi, A.2
-
14
-
-
63449085865
-
A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions
-
M. Dehghan, and A. Shokri A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions Numer. Methods Partial Differ. Equat. 25 2009 494 506
-
(2009)
Numer. Methods Partial Differ. Equat.
, vol.25
, pp. 494-506
-
-
Dehghan, M.1
Shokri, A.2
-
15
-
-
74849107653
-
A new unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations
-
R.K. Mohanty A new unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations Int. J. Comput. Math. 86 12 2009 2061 2071
-
(2009)
Int. J. Comput. Math.
, vol.86
, Issue.12
, pp. 2061-2071
-
-
Mohanty, R.K.1
-
16
-
-
74449091789
-
Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation
-
M. Dehghan, and A. Ghesmati Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation Eng. Anal. Bound. Elem. 34 2010 324 336
-
(2010)
Eng. Anal. Bound. Elem.
, vol.34
, pp. 324-336
-
-
Dehghan, M.1
Ghesmati, A.2
-
17
-
-
0002800312
-
Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations
-
R. Bellman, B.G. Kashef, and J. Casti Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations J. Comput. Phys 10 1972 40 52
-
(1972)
J. Comput. Phys
, vol.10
, pp. 40-52
-
-
Bellman, R.1
Kashef, B.G.2
Casti, J.3
-
18
-
-
0024705632
-
New insights in solving distributed system equations by the quadrature method. I. Analysis
-
DOI 10.1016/0098-1354(89)85051-3
-
J.R. Quan, and C.T. Chang New insights in solving distributed system equations by the quadrature methods-I Comput. Chem. Eng. 13 1989 779 788 (Pubitemid 20620969)
-
(1989)
Computers and Chemical Engineering
, vol.13
, Issue.7
, pp. 779-788
-
-
Quan, J.R.1
Chang, C.T.2
-
19
-
-
0024738766
-
New insights in solving distributed system equations by the quadrature method. II. Numerical experiments
-
DOI 10.1016/0098-1354(89)87043-7
-
J.R. Quan, and C.T. Chang New insights in solving distributed system equations by the quadrature methods-II Comput. Chem. Eng. 13 1989 1017 1024 (Pubitemid 20632558)
-
(1989)
Computers and Chemical Engineering
, vol.13
, Issue.9
, pp. 1017-1024
-
-
Quan, J.R.1
Chang, C.-T.2
-
21
-
-
70349970652
-
Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method
-
M. Dehghan, and A. Ghesmati Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method Eng. Anal. Bound. Elem. 34 2010 51 59
-
(2010)
Eng. Anal. Bound. Elem.
, vol.34
, pp. 51-59
-
-
Dehghan, M.1
Ghesmati, A.2
-
22
-
-
79251549814
-
The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
-
M. Dehghan, S.A. Yousefi, and A. Lotfi The use of He's variational iteration method for solving the telegraph and fractional telegraph equations Int. J. Numer. Methods Biomed. Eng. 27 2011 219 231
-
(2011)
Int. J. Numer. Methods Biomed. Eng.
, vol.27
, pp. 219-231
-
-
Dehghan, M.1
Yousefi, S.A.2
Lotfi, A.3
-
23
-
-
43249129160
-
The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation
-
M. Dehghan, and A. Mohebbi The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation Numer. Methods Partial Differ. Equat. 24 2008 897 910
-
(2008)
Numer. Methods Partial Differ. Equat.
, vol.24
, pp. 897-910
-
-
Dehghan, M.1
Mohebbi, A.2
-
24
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
DOI 10.1016/j.matcom.2005.10.001, PII S0378475405002259
-
M. Dehghan Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Math. Comput. Simul. 71 1 2006 16 30 (Pubitemid 43243672)
-
(2006)
Mathematics and Computers in Simulation
, vol.71
, Issue.1
, pp. 16-30
-
-
Dehghan, M.1
-
25
-
-
71049150426
-
Differential quadrature method for two dimensional Burgers' equations
-
R.C. Mittal, and Ram Jiwari Differential quadrature method for two dimensional Burgers' equations Int. J. Comput. Methods Eng. Sci. Mech. 10 2009 450 459
-
(2009)
Int. J. Comput. Methods Eng. Sci. Mech.
, vol.10
, pp. 450-459
-
-
Mittal, R.C.1
Jiwari, R.2
-
26
-
-
79551629810
-
Numerical study of two-dimensional reaction-diffusion Brusselator system
-
R.C. Mittal, and Ram Jiwari Numerical study of two-dimensional reaction-diffusion Brusselator system Appl. Math. Comput. 217 12 2011 5404 5415
-
(2011)
Appl. Math. Comput.
, vol.217
, Issue.12
, pp. 5404-5415
-
-
Mittal, R.C.1
Jiwari, R.2
-
27
-
-
84855456958
-
Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method
-
R. Jiwari, S. Pandit, and R. C Mittal Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method Comput. Phys. Commun. 183 3 2012 600 616
-
(2012)
Comput. Phys. Commun.
, vol.183
, Issue.3
, pp. 600-616
-
-
Jiwari, R.1
Pandit, S.2
Mittal R, C.3
|