-
1
-
-
34247184613
-
Unconditionally stable difference schemes for a one‐space‐dimensional linear hyperbolic equation
-
1 F. Gao and C. Chi, Unconditionally stable difference schemes for a one‐space‐dimensional linear hyperbolic equation, Appl Math Comput 187 ( 2007), 1272–1276.
-
(2007)
Appl Math Comput
, vol.187
, pp. 1272-1276
-
-
Gao, F.1
Chi, C.2
-
2
-
-
47049124300
-
A numerical method for solving the hyperbolic telegraph equation
-
2 M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer Methods Partial Differential Eq 24 ( 2008), 1080–1093.
-
(2008)
Numer Methods Partial Differential Eq
, vol.24
, pp. 1080-1093
-
-
Dehghan, M.1
Shokri, A.2
-
3
-
-
50849102362
-
High order compact solution of the one‐space‐dimensional linear hyperbolic equation
-
3 A. Mohebbi and M. Dehghan, High order compact solution of the one‐space‐dimensional linear hyperbolic equation, Numer Methods Partial Differential Eq 24 ( 2008), 1222–1235.
-
(2008)
Numer Methods Partial Differential Eq
, vol.24
, pp. 1222-1235
-
-
Mohebbi, A.1
Dehghan, M.2
-
4
-
-
33847786088
-
Numerical solution of the one‐dimensional wave equation with an integral condition
-
4 A. Saadatmandi and M. Dehghan, Numerical solution of the one‐dimensional wave equation with an integral condition, Numer Methods Partial Differential Eq 23 ( 2007), 282–292.
-
(2007)
Numer Methods Partial Differential Eq
, vol.23
, pp. 282-292
-
-
Saadatmandi, A.1
Dehghan, M.2
-
5
-
-
85120589084
-
Variational iteration method for solving the wave equation subject to an integral conservation condition
-
5 M. Dehghan and A. Saadatmandi, Variational iteration method for solving the wave equation subject to an integral conservation condition, Chaos Solitons Fractals, to appear.
-
Chaos Solitons Fractals
-
-
Dehghan, M.1
Saadatmandi, A.2
-
6
-
-
0030216940
-
On the use of high order difference methods for the system of one space second order non‐linear hyperbolic equations with variable coefficients
-
6 R. K. Mohanty, M. K. Jain, and K. George, On the use of high order difference methods for the system of one space second order non‐linear hyperbolic equations with variable coefficients, J Comp Appl Math 72 ( 1996), 421–431.
-
(1996)
J Comp Appl Math
, vol.72
, pp. 421-431
-
-
Mohanty, R.K.1
Jain, M.K.2
George, K.3
-
7
-
-
34249826970
-
A numerical algorithm for the solution of telegraph equations
-
7 M. S. El‐Azab and M. El‐Gamel, A numerical algorithm for the solution of telegraph equations, Appl Math Comput 190 ( 2007), 757–764.
-
(2007)
Appl Math Comput
, vol.190
, pp. 757-764
-
-
El‐Azab, M.S.1
El‐Gamel, M.2
-
8
-
-
0004049424
-
Industrial microwave, Heating
-
8 A. C. Metaxas and R. J. Meredith, Industrial microwave, Heating, Peter Peregrinus, London, 1993.
-
(1993)
-
-
Metaxas, A.C.1
Meredith, R.J.2
-
9
-
-
0003445112
-
Foundations and industrial applications of microwaves and radio frequency fields
-
9 G. Roussy and J. A. Pearcy, Foundations and industrial applications of microwaves and radio frequency fields, Wiley, New York, 1995.
-
(1995)
-
-
Roussy, G.1
Pearcy, J.A.2
-
10
-
-
34250888790
-
Computing the variable coefficient telegraph equation using a discrete eigenfunctions method
-
10 R. Aloy, M. C. Casaban, L. A. Caudillo‐Mata, and L. Jodar, Computing the variable coefficient telegraph equation using a discrete eigenfunctions method, Comput Math Appl 54 ( 2007), 448–458.
-
(2007)
Comput Math Appl
, vol.54
, pp. 448-458
-
-
Aloy, R.1
Casaban, M.C.2
Caudillo‐Mata, L.A.3
Jodar, L.4
-
11
-
-
0035500142
-
An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
-
11 R. K. Mohanty and M. K. Jain, An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numer Methods Partial Differential Eq 17 ( 2001), 684–688.
-
(2001)
Numer Methods Partial Differential Eq
, vol.17
, pp. 684-688
-
-
Mohanty, R.K.1
Jain, M.K.2
-
12
-
-
0942302128
-
An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions
-
12 R. K. Mohanty, M. K. Jain, and U. Arora, An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions, Int J Comput Math 79 ( 2002), 133–142.
-
(2002)
Int J Comput Math
, vol.79
, pp. 133-142
-
-
Mohanty, R.K.1
Jain, M.K.2
Arora, U.3
-
13
-
-
84874427620
-
The state of art in spectral methods
-
13 B. Y. Guo, The state of art in spectral methods, City University of Hong Kong, Hong Kong, 1996.
-
(1996)
-
-
Guo, B.Y.1
-
14
-
-
85162699057
-
Trigonometric interpolation of empirical and analytic functions
-
14 C. Lanczos, Trigonometric interpolation of empirical and analytic functions, J Math Phys 17 ( 1938), 123–199.
-
(1938)
J Math Phys
, vol.17
, pp. 123-199
-
-
Lanczos, C.1
-
15
-
-
0003398168
-
Applied analysis
-
15 C. Lanczos, Applied analysis, Pitman, London, 1957.
-
(1957)
-
-
Lanczos, C.1
-
17
-
-
0021177673
-
Numerical solution of partial differential equations with variable coefficients with an operational approach to the tau method
-
17 E. L. Ortiz and H. Samara, Numerical solution of partial differential equations with variable coefficients with an operational approach to the tau method, Comput Math Appl 10 ( 1984), 5–13.
-
(1984)
Comput Math Appl
, vol.10
, pp. 5-13
-
-
Ortiz, E.L.1
Samara, H.2
-
18
-
-
0040679523
-
The algebraic kernel method for the numerical solution of partial differential equations
-
18 M. H. A. Abadi and E. L. Ortiz, The algebraic kernel method for the numerical solution of partial differential equations, J Numer Funct Anal Optim 12 ( 1991), 339–360.
-
(1991)
J Numer Funct Anal Optim
, vol.12
, pp. 339-360
-
-
Abadi, M.H.A.1
Ortiz, E.L.2
-
19
-
-
0003766476
-
Spectral methods in fluid dynamic
-
19 C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamic, Prentice‐Hall, Englewood Cliffs, NJ, 1988.
-
(1988)
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
20
-
-
0040679523
-
The algebraic kernel method for the numerical solution of partial differential equations
-
20 L. F. Cordero and R. Escalante, The algebraic kernel method for the numerical solution of partial differential equations, J Numer Funct Anal Optim 12 ( 1991), 339–360.
-
(1991)
J Numer Funct Anal Optim
, vol.12
, pp. 339-360
-
-
Cordero, L.F.1
Escalante, R.2
-
21
-
-
33846930099
-
A tau method for the one‐dimensional parabolic inverse problem subject to temperature overspecification
-
21 M. Dehghan and A. Saadatmandi, A tau method for the one‐dimensional parabolic inverse problem subject to temperature overspecification, Comput Math Appl 52 ( 2006), 933–940.
-
(2006)
Comput Math Appl
, vol.52
, pp. 933-940
-
-
Dehghan, M.1
Saadatmandi, A.2
-
22
-
-
27844498825
-
Hartley series approximations for the parabolic equations
-
22 A. Saadatmandi, M. Razzaghi, and M. Dehghan, Hartley series approximations for the parabolic equations, Int J Comput Math 82 ( 2005), 1149–1156.
-
(2005)
Int J Comput Math
, vol.82
, pp. 1149-1156
-
-
Saadatmandi, A.1
Razzaghi, M.2
Dehghan, M.3
-
23
-
-
57749203983
-
Numerical solution of a mathematical model for capillary formation in tumor angiogenesis via the tau method
-
23 A. Saadatmandi and M. Dehghan, Numerical solution of a mathematical model for capillary formation in tumor angiogenesis via the tau method, Commun Numer Methods Eng 24 ( 2008), 1467–1474.
-
(2008)
Commun Numer Methods Eng
, vol.24
, pp. 1467-1474
-
-
Saadatmandi, A.1
Dehghan, M.2
-
24
-
-
0037448159
-
Chebyshev finite difference approximation for the boundary value problems
-
24 E. M. E. Elbarbary, Chebyshev finite difference approximation for the boundary value problems, Appl Math Comput 139 ( 2003), 513–523.
-
(2003)
Appl Math Comput
, vol.139
, pp. 513-523
-
-
Elbarbary, E.M.E.1
-
25
-
-
0035251701
-
Frobenius‐Chebyshev polynomial approximations with a priori error bounds for nonlinear initial value differential problems
-
25 B. Chen, R. Garcia‐Bolos, and L. Jodar, Frobenius‐Chebyshev polynomial approximations with a priori error bounds for nonlinear initial value differential problems, Comput Math Appl 41 ( 2001), 269–280.
-
(2001)
Comput Math Appl
, vol.41
, pp. 269-280
-
-
Chen, B.1
Garcia‐Bolos, R.2
Jodar, L.3
-
26
-
-
0038683230
-
The truncation error of the two‐variable Chebyshev series expansions
-
26 B. Chen, R. Garcia‐Bolos, L. Jodar, and M. D. Rosello, The truncation error of the two‐variable Chebyshev series expansions, Comput Math Appl 45 ( 2003), 1647–1653.
-
(2003)
Comput Math Appl
, vol.45
, pp. 1647-1653
-
-
Chen, B.1
Garcia‐Bolos, R.2
Jodar, L.3
Rosello, M.D.4
-
27
-
-
0022101681
-
Application of shifted Chebyshev series to the optimal control of linear distributed‐parameter systems
-
27 I. R. Horng and J. H. Chou, Application of shifted Chebyshev series to the optimal control of linear distributed‐parameter systems, Int J Control 42 ( 1985), 233–241.
-
(1985)
Int J Control
, vol.42
, pp. 233-241
-
-
Horng, I.R.1
Chou, J.H.2
-
28
-
-
27144506208
-
Analytic and approximate solutions of the space and time‐fractional telegraph equations
-
28 S. Momani, Analytic and approximate solutions of the space and time‐fractional telegraph equations, Appl Math Comput 170 ( 2005), 1126–1134.
-
(2005)
Appl Math Comput
, vol.170
, pp. 1126-1134
-
-
Momani, S.1
-
29
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
29 M. Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul 71 ( 2006), 16–30.
-
(2006)
Math Comput Simul
, vol.71
, pp. 16-30
-
-
Dehghan, M.1
-
30
-
-
11144275388
-
On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
-
30 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods for Partial Differential Eq 21 ( 2005), 24–40.
-
(2005)
Numer Methods for Partial Differential Eq
, vol.21
, pp. 24-40
-
-
Dehghan, M.1
-
31
-
-
18744412104
-
Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement
-
31 M. Dehghan, Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement, Numer Methods for Partial Differential Eq 21 ( 2005), 611–622.
-
(2005)
Numer Methods for Partial Differential Eq
, vol.21
, pp. 611-622
-
-
Dehghan, M.1
-
33
-
-
33645276878
-
A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
-
33 M. Dehghan, A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods for Partial Differential Eq 22 ( 2006), 220–257.
-
(2006)
Numer Methods for Partial Differential Eq
, vol.22
, pp. 220-257
-
-
Dehghan, M.1
-
34
-
-
33749559910
-
The one‐dimensional heat equation subject to a boundary integral specification
-
34 M. Dehghan, The one‐dimensional heat equation subject to a boundary integral specification, Chaos, Solitons and Fractals 32 ( 2007), 661–675.
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, pp. 661-675
-
-
Dehghan, M.1
-
35
-
-
35448960877
-
Numerical solution of the Klein‐Gordon equation via H's variational iteration method
-
35 F. Shakeri and M. Dehghan, Numerical solution of the Klein‐Gordon equation via H's variational iteration method, Nonlinear Dynamics 51 ( 2008), 89–97.
-
(2008)
Nonlinear Dynamics
, vol.51
, pp. 89-97
-
-
Shakeri, F.1
Dehghan, M.2
-
36
-
-
56249086875
-
The boundary integral equation approach for numerical solution of the one‐dimensional Sine‐Gordon equation
-
36 M. Dehghan and D. Mirzaei, The boundary integral equation approach for numerical solution of the one‐dimensional Sine‐Gordon equation, Numer Methods for Partial Differential Eq 24 ( 2008), 1405–1415.
-
(2008)
Numer Methods for Partial Differential Eq
, vol.24
, pp. 1405-1415
-
-
Dehghan, M.1
Mirzaei, D.2
|