-
1
-
-
11144275388
-
On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
-
1 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Eq 21 (2005), 24–40.
-
(2005)
Numer Methods Partial Differential Eq
, vol.21
, pp. 24-40
-
-
Dehghan, M.1
-
2
-
-
0030216940
-
On the use of high order difference methods for the system of one space second order non‐linear hyperbolic equations with variable coefficients
-
2 R. K. Mohanty, M. K. Jain, and K. George, On the use of high order difference methods for the system of one space second order non‐linear hyperbolic equations with variable coefficients, J Comput Appl Math 72 (1996), 421–431.
-
(1996)
J Comput Appl Math
, vol.72
, pp. 421-431
-
-
Mohanty, R.K.1
Jain, M.K.2
George, K.3
-
3
-
-
0347975059
-
An explicit difference method for the wave equation with extended stability range
-
3 E. H. Twizell, An explicit difference method for the wave equation with extended stability range, BIT 19 (1979), 378–383.
-
(1979)
BIT
, vol.19
, pp. 378-383
-
-
Twizell, E.H.1
-
4
-
-
0942300277
-
An unconditionally stable difference scheme for the one‐space dimensional linear hyperbolic equation
-
4 R. K. Mohanty, An unconditionally stable difference scheme for the one‐space dimensional linear hyperbolic equation, Appl Math Lett 17 (2004), 101–105.
-
(2004)
Appl Math Lett
, vol.17
, pp. 101-105
-
-
Mohanty, R.K.1
-
5
-
-
17444391655
-
An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
-
5 R. K. Mohanty, An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients, Appl Math Comput 165 (2005), 229–236.
-
(2005)
Appl Math Comput
, vol.165
, pp. 229-236
-
-
Mohanty, R.K.1
-
6
-
-
0003568343
-
Numerical solution of partial differential equations in science and engineering
-
6 L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982.
-
(1982)
-
-
Lapidus, L.1
Pinder, G.F.2
-
7
-
-
50849102362
-
High order compact solution of the one‐space‐dimensional linear hyperbolic equation
-
7 A. Mohebbi and M. Dehghan, High order compact solution of the one‐space‐dimensional linear hyperbolic equation, Numer Methods Partial Differential Eq 24 (2008), 1222–1235.
-
(2008)
Numer Methods Partial Differential Eq
, vol.24
, pp. 1222-1235
-
-
Mohebbi, A.1
Dehghan, M.2
-
8
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
8 M. Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simulation 71 (2006), 16–30.
-
(2006)
Math Comput Simulation
, vol.71
, pp. 16-30
-
-
Dehghan, M.1
-
9
-
-
33748938323
-
Implicit collocation technique for heat equation with non‐classic initial condition
-
9 M. Dehghan, Implicit collocation technique for heat equation with non‐classic initial condition, Int J Non‐Linear Sci Numer Simul 7 (2006), 447–450.
-
(2006)
Int J Non‐Linear Sci Numer Simul
, vol.7
, pp. 447-450
-
-
Dehghan, M.1
-
10
-
-
47049124300
-
A numerical method for solving the hyperbolic telegraph equation
-
10 M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer Methods Partial Differential Eq 24 (2008), 1080–1093.
-
(2008)
Numer Methods Partial Differential Eq
, vol.24
, pp. 1080-1093
-
-
Dehghan, M.1
Shokri, A.2
-
11
-
-
0003422931
-
Chebyshev and Fourier spectral methods
-
11 J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publication, Inc., Mineola, New York, 2000.
-
(2000)
-
-
Boyd, J.P.1
-
12
-
-
19744375661
-
Parameter determination in a partial differential equation from the overspecified data
-
12 M. Dehghan, Parameter determination in a partial differential equation from the overspecified data, Math Comput Model 41 (2005), 196–213.
-
(2005)
Math Comput Model
, vol.41
, pp. 196-213
-
-
Dehghan, M.1
-
13
-
-
33645276878
-
A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
-
13 M. Dehghan, A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods Partial Differential Eq 22 (2006), 220–257.
-
(2006)
Numer Methods Partial Differential Eq
, vol.22
, pp. 220-257
-
-
Dehghan, M.1
-
14
-
-
34250357719
-
Time‐splitting procedures for the solution of the two‐dimensional transport equation
-
14 M. Dehghan, Time‐splitting procedures for the solution of the two‐dimensional transport equation, Kybernetes 36 (2007), 791–805.
-
(2007)
Kybernetes
, vol.36
, pp. 791-805
-
-
Dehghan, M.1
-
15
-
-
33749559910
-
The one‐dimensional heat equation subject to a boundary integral specification
-
15 M. Dehghan, The one‐dimensional heat equation subject to a boundary integral specification, Chaos, Solitons and Fractals 32 (2007), 661–675.
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, pp. 661-675
-
-
Dehghan, M.1
|