메뉴 건너뛰기




Volumn 25, Issue 4, 2009, Pages 931-938

The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation

Author keywords

Chebyshev cardinal functions; Operational matrix of derivative; Telegraph equation; The second order hyperbolic equation

Indexed keywords


EID: 67849124107     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20382     Document Type: Article
Times cited : (85)

References (15)
  • 1
    • 11144275388 scopus 로고    scopus 로고
    • On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
    • 1 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Eq 21 (2005), 24–40.
    • (2005) Numer Methods Partial Differential Eq , vol.21 , pp. 24-40
    • Dehghan, M.1
  • 2
    • 0030216940 scopus 로고    scopus 로고
    • On the use of high order difference methods for the system of one space second order non‐linear hyperbolic equations with variable coefficients
    • 2 R. K. Mohanty, M. K. Jain, and K. George, On the use of high order difference methods for the system of one space second order non‐linear hyperbolic equations with variable coefficients, J Comput Appl Math 72 (1996), 421–431.
    • (1996) J Comput Appl Math , vol.72 , pp. 421-431
    • Mohanty, R.K.1    Jain, M.K.2    George, K.3
  • 3
    • 0347975059 scopus 로고
    • An explicit difference method for the wave equation with extended stability range
    • 3 E. H. Twizell, An explicit difference method for the wave equation with extended stability range, BIT 19 (1979), 378–383.
    • (1979) BIT , vol.19 , pp. 378-383
    • Twizell, E.H.1
  • 4
    • 0942300277 scopus 로고    scopus 로고
    • An unconditionally stable difference scheme for the one‐space dimensional linear hyperbolic equation
    • 4 R. K. Mohanty, An unconditionally stable difference scheme for the one‐space dimensional linear hyperbolic equation, Appl Math Lett 17 (2004), 101–105.
    • (2004) Appl Math Lett , vol.17 , pp. 101-105
    • Mohanty, R.K.1
  • 5
    • 17444391655 scopus 로고    scopus 로고
    • An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
    • 5 R. K. Mohanty, An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients, Appl Math Comput 165 (2005), 229–236.
    • (2005) Appl Math Comput , vol.165 , pp. 229-236
    • Mohanty, R.K.1
  • 6
    • 0003568343 scopus 로고
    • Numerical solution of partial differential equations in science and engineering
    • 6 L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982.
    • (1982)
    • Lapidus, L.1    Pinder, G.F.2
  • 7
    • 50849102362 scopus 로고    scopus 로고
    • High order compact solution of the one‐space‐dimensional linear hyperbolic equation
    • 7 A. Mohebbi and M. Dehghan, High order compact solution of the one‐space‐dimensional linear hyperbolic equation, Numer Methods Partial Differential Eq 24 (2008), 1222–1235.
    • (2008) Numer Methods Partial Differential Eq , vol.24 , pp. 1222-1235
    • Mohebbi, A.1    Dehghan, M.2
  • 8
    • 32644435892 scopus 로고    scopus 로고
    • Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
    • 8 M. Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simulation 71 (2006), 16–30.
    • (2006) Math Comput Simulation , vol.71 , pp. 16-30
    • Dehghan, M.1
  • 9
    • 33748938323 scopus 로고    scopus 로고
    • Implicit collocation technique for heat equation with non‐classic initial condition
    • 9 M. Dehghan, Implicit collocation technique for heat equation with non‐classic initial condition, Int J Non‐Linear Sci Numer Simul 7 (2006), 447–450.
    • (2006) Int J Non‐Linear Sci Numer Simul , vol.7 , pp. 447-450
    • Dehghan, M.1
  • 10
    • 47049124300 scopus 로고    scopus 로고
    • A numerical method for solving the hyperbolic telegraph equation
    • 10 M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer Methods Partial Differential Eq 24 (2008), 1080–1093.
    • (2008) Numer Methods Partial Differential Eq , vol.24 , pp. 1080-1093
    • Dehghan, M.1    Shokri, A.2
  • 11
    • 0003422931 scopus 로고    scopus 로고
    • Chebyshev and Fourier spectral methods
    • 11 J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publication, Inc., Mineola, New York, 2000.
    • (2000)
    • Boyd, J.P.1
  • 12
    • 19744375661 scopus 로고    scopus 로고
    • Parameter determination in a partial differential equation from the overspecified data
    • 12 M. Dehghan, Parameter determination in a partial differential equation from the overspecified data, Math Comput Model 41 (2005), 196–213.
    • (2005) Math Comput Model , vol.41 , pp. 196-213
    • Dehghan, M.1
  • 13
    • 33645276878 scopus 로고    scopus 로고
    • A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
    • 13 M. Dehghan, A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods Partial Differential Eq 22 (2006), 220–257.
    • (2006) Numer Methods Partial Differential Eq , vol.22 , pp. 220-257
    • Dehghan, M.1
  • 14
    • 34250357719 scopus 로고    scopus 로고
    • Time‐splitting procedures for the solution of the two‐dimensional transport equation
    • 14 M. Dehghan, Time‐splitting procedures for the solution of the two‐dimensional transport equation, Kybernetes 36 (2007), 791–805.
    • (2007) Kybernetes , vol.36 , pp. 791-805
    • Dehghan, M.1
  • 15
    • 33749559910 scopus 로고    scopus 로고
    • The one‐dimensional heat equation subject to a boundary integral specification
    • 15 M. Dehghan, The one‐dimensional heat equation subject to a boundary integral specification, Chaos, Solitons and Fractals 32 (2007), 661–675.
    • (2007) Chaos, Solitons and Fractals , vol.32 , pp. 661-675
    • Dehghan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.