메뉴 건너뛰기




Volumn 25, Issue 2, 2009, Pages 494-506

A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions

Author keywords

Collocation; Radial basis functions (RBFs); Thin plate splines (TPS); Two dimensional linear hyperbolic equation; Two dimensional telegraph equation

Indexed keywords


EID: 63449085865     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20357     Document Type: Article
Times cited : (85)

References (28)
  • 1
    • 34247184613 scopus 로고    scopus 로고
    • Unconditionally stable difference schemes for a one‐space‐dimensional linear hyperbolic equation
    • 1 F. Gao and C. Chi, Unconditionally stable difference schemes for a one‐space‐dimensional linear hyperbolic equation, Appl Math Comput 187 (2007), 1272–1276.
    • (2007) Appl Math Comput , vol.187 , pp. 1272-1276
    • Gao, F.1    Chi, C.2
  • 2
    • 0035500142 scopus 로고    scopus 로고
    • An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
    • 2 R. K. Mohanty and M. K. Jain, An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numer Methods Partial Diff Eq 17 (2001), 684–688.
    • (2001) Numer Methods Partial Diff Eq , vol.17 , pp. 684-688
    • Mohanty, R.K.1    Jain, M.K.2
  • 3
    • 0942302128 scopus 로고    scopus 로고
    • An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions
    • 3 R. K. Mohanty, M. K. Jain, and U. Arora, An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions, Int J Comput Math 79 (2002), 133–142.
    • (2002) Int J Comput Math , vol.79 , pp. 133-142
    • Mohanty, R.K.1    Jain, M.K.2    Arora, U.3
  • 4
    • 2342592014 scopus 로고    scopus 로고
    • An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions
    • 4 R. K. Mohanty, An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions, Appl Math Comput 152 (2004), 799–806.
    • (2004) Appl Math Comput , vol.152 , pp. 799-806
    • Mohanty, R.K.1
  • 5
    • 85120596320 scopus 로고    scopus 로고
    • High order implicit collocation method for the solution of two dimensional linear hyperbolic equation
    • 5 M. Dehghan and A. Mohebbi, High order implicit collocation method for the solution of two dimensional linear hyperbolic equation, Numer Methods Partial Diff Eq, to appear.
    • Numer Methods Partial Diff Eq
    • Dehghan, M.1    Mohebbi, A.2
  • 6
    • 33645276878 scopus 로고    scopus 로고
    • A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
    • 6 M. Dehghan, A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods Partial Diff Eq 22 (2006), 220–257.
    • (2006) Numer Methods Partial Diff Eq , vol.22 , pp. 220-257
    • Dehghan, M.1
  • 7
    • 32644435892 scopus 로고    scopus 로고
    • Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
    • 7 M. Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul 71 (2006), 16–30.
    • (2006) Math Comput Simul , vol.71 , pp. 16-30
    • Dehghan, M.1
  • 8
    • 33745726884 scopus 로고    scopus 로고
    • A collocation method using new combined radial basis functions of thin plate and multiquadraic types
    • 8 S. G. Ahmed, A collocation method using new combined radial basis functions of thin plate and multiquadraic types, Eng Anal Bound Elem 30 (2006), 697–701.
    • (2006) Eng Anal Bound Elem , vol.30 , pp. 697-701
    • Ahmed, S.G.1
  • 9
    • 0025229330 scopus 로고
    • Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics ‐ I
    • 9 E. J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics ‐ I, Comput Math Appl 19 (1990), 127–145.
    • (1990) Comput Math Appl , vol.19 , pp. 127-145
    • Kansa, E.J.1
  • 10
    • 0025210711 scopus 로고
    • Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics ‐ II
    • 10 E. J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics ‐ II, Comput Math Appl 19 (1990), 147–161.
    • (1990) Comput Math Appl , vol.19 , pp. 147-161
    • Kansa, E.J.1
  • 11
    • 0002879831 scopus 로고    scopus 로고
    • An efficient numerical scheme for Burgers equation
    • 11 Y. C. Hon and X. Z. Mao, An efficient numerical scheme for Burgers equation, Appl Math Comput 95 (1998), 37–50.
    • (1998) Appl Math Comput , vol.95 , pp. 37-50
    • Hon, Y.C.1    Mao, X.Z.2
  • 12
    • 0033133932 scopus 로고    scopus 로고
    • Multiquadric solution for shallow water equations
    • 12 Y. C. Hon, K. F. Cheung, X. Z. Mao, and E. J. Kansa, Multiquadric solution for shallow water equations, ASCE J Hydraulic Eng 125 (1999), 524–533.
    • (1999) ASCE J Hydraulic Eng , vol.125 , pp. 524-533
    • Hon, Y.C.1    Cheung, K.F.2    Mao, X.Z.3    Kansa, E.J.4
  • 13
    • 0032529187 scopus 로고
    • A numerical method for heat transfer problem using collocation and radial basis functions
    • 13 M. Zerroukat, H. Power, and C. S. Chen, A numerical method for heat transfer problem using collocation and radial basis functions, Int J Numer Meth Eng 42 (1992), 1263–1278.
    • (1992) Int J Numer Meth Eng , vol.42 , pp. 1263-1278
    • Zerroukat, M.1    Power, H.2    Chen, C.S.3
  • 14
    • 34548359104 scopus 로고    scopus 로고
    • A numerical method for KdV equation using collocation and radial basis functions
    • 14 M. Dehghan and A. Shokri, A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dynam 50 (2007), 111–120.
    • (2007) Nonlinear Dynam , vol.50 , pp. 111-120
    • Dehghan, M.1    Shokri, A.2
  • 15
    • 34347347254 scopus 로고    scopus 로고
    • A numerical method for two‐dimensional Schrödinger equation using collocation and radial basis functions
    • 15 M. Dehghan and A. Shokri, A numerical method for two‐dimensional Schrödinger equation using collocation and radial basis functions, Comput Math Appl 54 (2007), 136–146.
    • (2007) Comput Math Appl , vol.54 , pp. 136-146
    • Dehghan, M.1    Shokri, A.2
  • 16
    • 0001291977 scopus 로고    scopus 로고
    • A radial basis function method for solving options pricing model
    • 16 Y. C. Hon and X. Z. Mao, A radial basis function method for solving options pricing model, Financial Eng 8 (1999), 31–49.
    • (1999) Financial Eng , vol.8 , pp. 31-49
    • Hon, Y.C.1    Mao, X.Z.2
  • 17
    • 0001764927 scopus 로고    scopus 로고
    • On the use of boundary conditions for variational formulations arising in financial mathematics
    • 17 M. Marcozzi, S. Choi, and C. S. Chen, On the use of boundary conditions for variational formulations arising in financial mathematics, Appl Math Comput 124 (2001), 197–214.
    • (2001) Appl Math Comput , vol.124 , pp. 197-214
    • Marcozzi, M.1    Choi, S.2    Chen, C.S.3
  • 18
    • 0002434097 scopus 로고    scopus 로고
    • Solving partial differential equations by collocation with radial basis functions
    • 18 G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, A. Le Méhauté, C. Rabut, L. L. Schumaker, editors, Surface fitting and multiresolution methods, Vanderbilt University Press, Nashville TN, 1997.
    • (1997)
    • Fasshauer, G.E.1
  • 19
    • 33747082389 scopus 로고    scopus 로고
    • Determination of a control parameter in a one‐dimensional parabolic equation using the method of radial basis functions
    • 19 M. Dehghan and M. Tatari, Determination of a control parameter in a one‐dimensional parabolic equation using the method of radial basis functions, Math Comput Model 44 (2006), 1160–1168.
    • (2006) Math Comput Model , vol.44 , pp. 1160-1168
    • Dehghan, M.1    Tatari, M.2
  • 20
    • 0003568343 scopus 로고
    • Numerical solution of partial differential equations in science and engineering
    • 20 L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982.
    • (1982)
    • Lapidus, L.1    Pinder, G.F.2
  • 21
    • 33748938323 scopus 로고    scopus 로고
    • Implicit collocation technique for heat equation with non‐classic initial condition
    • 21 M. Dehghan, Implicit collocation technique for heat equation with non‐classic initial condition, Int J Nonlinear Sci Numer Simulation 7 (2006), 447–450.
    • (2006) Int J Nonlinear Sci Numer Simulation , vol.7 , pp. 447-450
    • Dehghan, M.1
  • 22
    • 11144275388 scopus 로고    scopus 로고
    • On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
    • 22 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Diff Eq 21 (2005), 24–40.
    • (2005) Numer Methods Partial Diff Eq , vol.21 , pp. 24-40
    • Dehghan, M.1
  • 23
    • 33749559910 scopus 로고    scopus 로고
    • The one‐dimensional heat equation subject to a boundary integral specification, Chaos
    • 23 M. Dehghan, The one‐dimensional heat equation subject to a boundary integral specification, Chaos, Solitons Fractals 32 (2007), 661–675.
    • (2007) Solitons Fractals , vol.32 , pp. 661-675
    • Dehghan, M.1
  • 24
    • 19744375661 scopus 로고    scopus 로고
    • Parameter determination in a partial differential equation from the overspecified data
    • 24 M. Dehghan, Parameter determination in a partial differential equation from the overspecified data, Math Comput Modelling 41 (2005), 196–213.
    • (2005) Math Comput Modelling , vol.41 , pp. 196-213
    • Dehghan, M.1
  • 25
    • 9544239366 scopus 로고    scopus 로고
    • Efficient techniques for the second‐order parabolic equation subject to nonlocal specifications
    • 25 M. Dehghan, Efficient techniques for the second‐order parabolic equation subject to nonlocal specifications, Appl Numer Math 52 (2005), 39–62.
    • (2005) Appl Numer Math , vol.52 , pp. 39-62
    • Dehghan, M.1
  • 26
    • 36048991845 scopus 로고    scopus 로고
    • The dual reciprocity boundary element method (DRBEM) for two‐dimensional sine‐Gordon equation
    • 26 M. Dehghan and D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for two‐dimensional sine‐Gordon equation, Computer Methods in Applied Mechanics and Engineering 197 (2008), 476–486.
    • (2008) Computer Methods in Applied Mechanics and Engineering , vol.197 , pp. 476-486
    • Dehghan, M.1    Mirzaei, D.2
  • 27
    • 35448960877 scopus 로고    scopus 로고
    • Numerical solution of the Klein‐Gordon equation via He's variational iteration method
    • 27 F. Shakeri and M. Dehghan, Numerical solution of the Klein‐Gordon equation via He's variational iteration method, Nonlinear Dynamics 51 (2008), 89–97.
    • (2008) Nonlinear Dynamics , vol.51 , pp. 89-97
    • Shakeri, F.1    Dehghan, M.2
  • 28
    • 18744412104 scopus 로고    scopus 로고
    • Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement
    • 28 M. Dehghan, Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement, Numer Methods Partial Diff Eq 21 (2005), 611–622.
    • (2005) Numer Methods Partial Diff Eq , vol.21 , pp. 611-622
    • Dehghan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.