메뉴 건너뛰기




Volumn 32, Issue 4, 2012, Pages 751-762

TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA; NUCLEAR FACTOR; PROTEIN BCL X; PROTEIN TCERG1; RNA POLYMERASE II; UNCLASSIFIED DRUG;

EID: 84856774960     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.06255-11     Document Type: Article
Times cited : (44)

References (71)
  • 2
    • 67650299463 scopus 로고    scopus 로고
    • Control of alternative splicing through siRNAmediated transcriptional gene silencing
    • Allo M, et al. 2009. Control of alternative splicing through siRNAmediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16: 717-724.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 717-724
    • Allo, M.1
  • 3
    • 0027282044 scopus 로고
    • bcl- x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death
    • Boise LH, et al. 1993. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597-608.
    • (1993) Cell , vol.74 , pp. 597-608
    • Boise, L.H.1
  • 4
    • 0030844256 scopus 로고    scopus 로고
    • A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II
    • Bourquin JP, et al. 1997. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Nucleic Acids Res. 25:2055-2061.
    • (1997) Nucleic Acids Res , vol.25 , pp. 2055-2061
    • Bourquin, J.P.1
  • 5
    • 0036534129 scopus 로고    scopus 로고
    • Alternative splicing: multiple control mechanisms and involvement in human disease
    • Caceres JF, Kornblihtt AR. 2002. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18:186-193.
    • (2002) Trends Genet , vol.18 , pp. 186-193
    • Caceres, J.F.1    Kornblihtt, A.R.2
  • 6
    • 78649289872 scopus 로고    scopus 로고
    • Global analysis of nascent RNA reveals transcriptional pausing in terminal exons
    • Carrillo Oesterreich F, Preibisch S, Neugebauer KM. 2010. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40:571-581.
    • (2010) Mol. Cell , vol.40 , pp. 571-581
    • Carrillo Oesterreich, F.1    Preibisch, S.2    Neugebauer, K.M.3
  • 7
    • 0034255028 scopus 로고    scopus 로고
    • Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II
    • Carty SM, Goldstrohm AC, Suñé C, Garcia-Blanco MA, Greenleaf AL. 2000. Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 97:9015-9020.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 9015-9020
    • Carty, S.M.1    Goldstrohm, A.C.2    Suñé, C.3    Garcia-Blanco, M.A.4    Greenleaf, A.L.5
  • 8
    • 1242309371 scopus 로고    scopus 로고
    • The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability
    • Chapman RD, Palancade B, Lang A, Bensaude O, Eick D. 2004. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res. 32:35-44.
    • (2004) Nucleic Acids Res , vol.32 , pp. 35-44
    • Chapman, R.D.1    Palancade, B.2    Lang, A.3    Bensaude, O.4    Eick, D.5
  • 9
    • 0034808138 scopus 로고    scopus 로고
    • Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae
    • Chavez S, Garcia-Rubio M, Prado F, Aguilera A. 2001. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 21:7054-7064.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 7054-7064
    • Chavez, S.1    Garcia-Rubio, M.2    Prado, F.3    Aguilera, A.4
  • 10
    • 0029915243 scopus 로고    scopus 로고
    • Drosophila RNA polymerase II mutants that affect transcription elongation
    • Chen Y, Chafin D, Price DH, Greenleaf AL. 1996. Drosophila RNA polymerase II mutants that affect transcription elongation. J. Biol. Chem. 271:5993-5999.
    • (1996) J. Biol. Chem. , vol.271 , pp. 5993-5999
    • Chen, Y.1    Chafin, D.2    Price, D.H.3    Greenleaf, A.L.4
  • 11
    • 33846001366 scopus 로고    scopus 로고
    • The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing
    • Cheng D, Cote J, Shaaban S, Bedford MT. 2007. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell 25:71-83.
    • (2007) Mol. Cell , vol.25 , pp. 71-83
    • Cheng, D.1    Cote, J.2    Shaaban, S.3    Bedford, M.T.4
  • 12
    • 0022345860 scopus 로고
    • A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro
    • Coulter DE, Greenleaf AL. 1985. A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro. J. Biol. Chem. 260:13190-13198.
    • (1985) J. Biol. Chem. , vol.260 , pp. 13190-13198
    • Coulter, D.E.1    Greenleaf, A.L.2
  • 13
    • 38649096939 scopus 로고    scopus 로고
    • A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo
    • Damgaard CK, et al. 2008. A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol. Cell 29:271-278.
    • (2008) Mol. Cell , vol.29 , pp. 271-278
    • Damgaard, C.K.1
  • 14
    • 33745860086 scopus 로고    scopus 로고
    • Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions
    • Deckert J, et al. 2006. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26:5528-5543.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 5528-5543
    • Deckert, J.1
  • 15
    • 33750596100 scopus 로고    scopus 로고
    • RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20
    • de la Mata M, Kornblihtt AR. 2006. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat. Struct. Mol. Biol. 13:973-980.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 973-980
    • de la Mata, M.1    Kornblihtt, A.R.2
  • 16
    • 0141888375 scopus 로고    scopus 로고
    • A slow RNA polymerase II affects alternative splicing in vivo
    • de la Mata M, et al. 2003. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12:525-532.
    • (2003) Mol. Cell , vol.12 , pp. 525-532
    • de la Mata, M.1
  • 17
    • 0024299506 scopus 로고
    • Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase?
    • Eperon LP, Graham IR, Griffiths AD, Eperon IC. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393-401.
    • (1988) Cell , vol.54 , pp. 393-401
    • Eperon, L.P.1    Graham, I.R.2    Griffiths, A.D.3    Eperon, I.C.4
  • 20
    • 20744450092 scopus 로고    scopus 로고
    • Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x
    • Garneau D, Revil T, Fisette JF, Chabot B. 2005. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J. Biol. Chem. 280:22641-22650.
    • (2005) J. Biol. Chem. , vol.280 , pp. 22641-22650
    • Garneau, D.1    Revil, T.2    Fisette, J.F.3    Chabot, B.4
  • 21
    • 0028967183 scopus 로고
    • RNA polymerase II C-terminal domain required for enhancer-driven transcription
    • Gerber HP, et al. 1995. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374:660-662.
    • (1995) Nature , vol.374 , pp. 660-662
    • Gerber, H.P.1
  • 22
    • 78149477660 scopus 로고    scopus 로고
    • Pausing of RNA polymerase II disrupts DNAspecified nucleosome organization to enable precise gene regulation
    • Gilchrist DA, et al. 2010. Pausing of RNA polymerase II disrupts DNAspecified nucleosome organization to enable precise gene regulation. Cell 143:540-551.
    • (2010) Cell , vol.143 , pp. 540-551
    • Gilchrist, D.A.1
  • 23
    • 0034774728 scopus 로고    scopus 로고
    • The transcription elongation factor CA150 interacts withRNApolymerase II and the pre-mRNA splicing factor SF1
    • Goldstrohm AC, Albrecht TR, Suñé C, Bedford MT, Garcia-Blanco MA. 2001. The transcription elongation factor CA150 interacts withRNApolymerase II and the pre-mRNA splicing factor SF1. Mol. Cell. Biol. 21:7617-7628.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 7617-7628
    • Goldstrohm, A.C.1    Albrecht, T.R.2    Suñé, C.3    Bedford, M.T.4    Garcia-Blanco, M.A.5
  • 24
    • 0035904279 scopus 로고    scopus 로고
    • Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing
    • Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA. 2001. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 277:31-47.
    • (2001) Gene , vol.277 , pp. 31-47
    • Goldstrohm, A.C.1    Greenleaf, A.L.2    Garcia-Blanco, M.A.3
  • 26
    • 0041305816 scopus 로고    scopus 로고
    • Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae
    • Howe KJ, Kane CM, Ares M, Jr. 2003. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9:993-1006.
    • (2003) RNA , vol.9 , pp. 993-1006
    • Howe, K.J.1    Kane, C.M.2    Ares Jr., M.3
  • 27
    • 0035887299 scopus 로고    scopus 로고
    • Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing
    • Kadener S, et al. 2001. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J. 20:5759-5768.
    • (2001) EMBO J , vol.20 , pp. 5759-5768
    • Kadener, S.1
  • 28
    • 0031022189 scopus 로고    scopus 로고
    • Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of premRNA
    • Kim E, Du L, Bregman DB, Warren SL. 1997. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of premRNA. J. Cell Biol. 136:19-28.
    • (1997) J. Cell Biol. , vol.136 , pp. 19-28
    • Kim, E.1    Du, L.2    Bregman, D.B.3    Warren, S.L.4
  • 29
    • 42449089029 scopus 로고    scopus 로고
    • Coupling transcription and alternative splicing
    • Kornblihtt AR. 2007. Coupling transcription and alternative splicing. Adv. Exp. Med. Biol. 623:175-189.
    • (2007) Adv. Exp. Med. Biol. , vol.623 , pp. 175-189
    • Kornblihtt, A.R.1
  • 30
    • 79955795581 scopus 로고    scopus 로고
    • Paused RNA polymerase II as a developmental checkpoint
    • Levine M. 2011. Paused RNA polymerase II as a developmental checkpoint. Cell 145:502-511.
    • (2011) Cell , vol.145 , pp. 502-511
    • Levine, M.1
  • 31
    • 68549104404 scopus 로고    scopus 로고
    • The sequence alignment/map format and SAM tools
    • Li H, et al. 2009. The sequence alignment/map format and SAM tools. Bioinformatics 25:2078 -2079.
    • (2009) Bioinformatics , vol.25 , pp. 2078-2079
    • Li, H.1
  • 32
    • 33749054403 scopus 로고    scopus 로고
    • Splicing regulation in neurologic disease
    • Licatalosi DD, Darnell RB. 2006. Splicing regulation in neurologic disease. Neuron 52:93-101.
    • (2006) Neuron , vol.52 , pp. 93-101
    • Licatalosi, D.D.1    Darnell, R.B.2
  • 33
    • 4744355045 scopus 로고    scopus 로고
    • The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo
    • Lin KT, Lu RM, Tarn WY. 2004. The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol. Cell. Biol. 24:9176-9185.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 9176-9185
    • Lin, K.T.1    Lu, R.M.2    Tarn, W.Y.3
  • 35
    • 33748351186 scopus 로고    scopus 로고
    • Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells
    • Listerman I, Sapra AK, Neugebauer KM. 2006. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13:815-822.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 815-822
    • Listerman, I.1    Sapra, A.K.2    Neugebauer, K.M.3
  • 37
    • 0037073946 scopus 로고    scopus 로고
    • Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome
    • Makarov EM, et al. 2002. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298:2205-2208.
    • (2002) Science , vol.298 , pp. 2205-2208
    • Makarov, E.M.1
  • 38
    • 0031037856 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
    • McCracken S, et al. 1997a. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357-361.
    • (1997) Nature , vol.385 , pp. 357-361
    • McCracken, S.1
  • 39
    • 0034637472 scopus 로고    scopus 로고
    • Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription
    • Meininghaus M, Chapman RD, Horndasch M, Eick D. 2000. Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J. Biol. Chem. 275:24375-24382.
    • (2000) J. Biol. Chem. , vol.275 , pp. 24375-24382
    • Meininghaus, M.1    Chapman, R.D.2    Horndasch, M.3    Eick, D.4
  • 40
    • 0033153543 scopus 로고    scopus 로고
    • RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo
    • Misteli T, Spector DL. 1999. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3:697-705.
    • (1999) Mol. Cell , vol.3 , pp. 697-705
    • Misteli, T.1    Spector, D.L.2
  • 41
    • 60149110358 scopus 로고    scopus 로고
    • Pre-mRNA processing reaches back to transcription and ahead to translation
    • Moore MJ, Proudfoot NJ. 2009. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688-700.
    • (2009) Cell , vol.136 , pp. 688-700
    • Moore, M.J.1    Proudfoot, N.J.2
  • 42
    • 0034704145 scopus 로고    scopus 로고
    • The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II
    • Morris DP, Greenleaf AL. 2000. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275:39935-39943.
    • (2000) J. Biol. Chem. , vol.275 , pp. 39935-39943
    • Morris, D.P.1    Greenleaf, A.L.2
  • 43
    • 0029775622 scopus 로고    scopus 로고
    • A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix
    • Mortillaro MJ, et al. 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. U. S. A. 93:8253-8257.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 8253-8257
    • Mortillaro, M.J.1
  • 44
    • 77956183151 scopus 로고    scopus 로고
    • The carboxy terminal domain of RNA polymerase II and alternative splicing
    • Munoz MJ, de la Mata M, Kornblihtt AR. 2010. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem. Sci. 35:497-504.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 497-504
    • Munoz, M.J.1    de la Mata, M.2    Kornblihtt, A.R.3
  • 45
    • 65549147264 scopus 로고    scopus 로고
    • DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation
    • Munoz MJ, et al. 2009. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137:708-720.
    • (2009) Cell , vol.137 , pp. 708-720
    • Munoz, M.J.1
  • 46
    • 0036674179 scopus 로고    scopus 로고
    • High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5′ splice site selection in support of a common looping out and repression mechanism
    • Nasim FU, Hutchison S, Cordeau M, Chabot B. 2002. High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5′ splice site selection in support of a common looping out and repression mechanism. RNA. 8:1078-1089.
    • (2002) RNA , vol.8 , pp. 1078-1089
    • Nasim, F.U.1    Hutchison, S.2    Cordeau, M.3    Chabot, B.4
  • 47
    • 0031711073 scopus 로고    scopus 로고
    • Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex
    • Neubauer G, et al. 1998. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet. 20:46-50.
    • (1998) Nat. Genet. , vol.20 , pp. 46-50
    • Neubauer, G.1
  • 48
    • 0037044769 scopus 로고    scopus 로고
    • Transcriptional activators differ in their abilities to control alternative splicing
    • Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR. 2002. Transcriptional activators differ in their abilities to control alternative splicing. J. Biol. Chem. 277:43110-43114.
    • (2002) J. Biol. Chem. , vol.277 , pp. 43110-43114
    • Nogues, G.1    Kadener, S.2    Cramer, P.3    Bentley, D.4    Kornblihtt, A.R.5
  • 50
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing
    • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 2008. Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing. Nat. Genet. 40:1413-1415.
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3    Frey, B.J.4    Blencowe, B.J.5
  • 51
    • 43149086129 scopus 로고    scopus 로고
    • Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing
    • Pearson JL, Robinson TJ, Munoz MJ, Kornblihtt AR, Garcia-Blanco MA. 2008. Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing. J. Biol. Chem. 283:7949-7961.
    • (2008) J. Biol. Chem. , vol.283 , pp. 7949-7961
    • Pearson, J.L.1    Robinson, T.J.2    Munoz, M.J.3    Kornblihtt, A.R.4    Garcia-Blanco, M.A.5
  • 52
    • 0036674269 scopus 로고    scopus 로고
    • Large-scale proteomic analysis of the human spliceosome
    • Rappsilber J, Ryder U, Lamond AI, Mann M. 2002. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12:1231-1245.
    • (2002) Genome Res , vol.12 , pp. 1231-1245
    • Rappsilber, J.1    Ryder, U.2    Lamond, A.I.3    Mann, M.4
  • 53
    • 0024312321 scopus 로고
    • RNA secondary structure is an integral part of the in vitro mechanism of attenuation in simian virus 40
    • Resnekov O, Kessler M, Aloni Y. 1989. RNA secondary structure is an integral part of the in vitro mechanism of attenuation in simian virus 40. J. Biol. Chem. 264:9953-9959.
    • (1989) J. Biol. Chem. , vol.264 , pp. 9953-9959
    • Resnekov, O.1    Kessler, M.2    Aloni, Y.3
  • 54
    • 69249087295 scopus 로고    scopus 로고
    • Heterogeneous nuclear ribonucleoprotein K represses the production of proapoptotic Bcl-xS splice isoform
    • Revil T, Pelletier J, Toutant J, Cloutier A, Chabot B. 2009. Heterogeneous nuclear ribonucleoprotein K represses the production of proapoptotic Bcl-xS splice isoform. J. Biol. Chem. 284:21458-21467.
    • (2009) J. Biol. Chem. , vol.284 , pp. 21458-21467
    • Revil, T.1    Pelletier, J.2    Toutant, J.3    Cloutier, A.4    Chabot, B.5
  • 55
    • 37149014737 scopus 로고    scopus 로고
    • Protein kinase C-dependent control of Bcl-x alternative splicing
    • Revil T, et al. 2007. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol. Cell. Biol. 27:8431-8441.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8431-8441
    • Revil, T.1
  • 57
    • 33745473130 scopus 로고    scopus 로고
    • Human transcription elongation factor CA150 localizes to splicing factorrich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions
    • Sánchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Suñé C. 2006. Human transcription elongation factor CA150 localizes to splicing factorrich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol. Cell. Biol. 26:4998-5014.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 4998-5014
    • Sánchez-Alvarez, M.1    Goldstrohm, A.C.2    Garcia-Blanco, M.A.3    Suñé, C.4
  • 58
    • 77952082869 scopus 로고    scopus 로고
    • Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1)
    • Sánchez-Alvarez M, Montes M, Sánchez-Hernández N, Hernández-Munain C, Suñé C. 2010. Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1). J. Biol. Chem. 285:15220-15233.
    • (2010) J. Biol. Chem. , vol.285 , pp. 15220-15233
    • Sánchez-Alvarez, M.1    Montes, M.2    Sánchez-Hernández, N.3    Hernández-Munain, C.4    Suñé, C.5
  • 59
    • 78650930370 scopus 로고    scopus 로고
    • The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x
    • Shkreta L, Michelle L, Toutant J, Tremblay ML, Chabot B. 2011. The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J. Biol. Chem. 286:331-340.
    • (2011) J. Biol. Chem. , vol.286 , pp. 331-340
    • Shkreta, L.1    Michelle, L.2    Toutant, J.3    Tremblay, M.L.4    Chabot, B.5
  • 60
    • 70350754211 scopus 로고    scopus 로고
    • Rates of in situ transcription and splicing in large human genes
    • Singh J, Padgett RA. 2009. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16:1128 -1133.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1128-1133
    • Singh, J.1    Padgett, R.A.2
  • 61
    • 6344277922 scopus 로고    scopus 로고
    • FF domains of CA150 bind transcription and splicing factors through multiple weak interactions
    • Smith MJ, Kulkarni S, Pawson T. 2004. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol. Cell. Biol. 24:9274-9285.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 9274-9285
    • Smith, M.J.1    Kulkarni, S.2    Pawson, T.3
  • 62
    • 0345161783 scopus 로고    scopus 로고
    • Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner
    • Suñé C, Garcia-Blanco MA. 1999. Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol. Cell. Biol. 19:4719-4728.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4719-4728
    • Suñé, C.1    Garcia-Blanco, M.A.2
  • 63
    • 1842287996 scopus 로고    scopus 로고
    • CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription
    • Suñé C, et al. 1997. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 17:6029-6039.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 6029-6039
    • Suñé, C.1
  • 64
    • 67649112275 scopus 로고    scopus 로고
    • Chromatin immunoprecipitation in mammalian cells
    • Svotelis A, Gevry N, Gaudreau L. 2009. Chromatin immunoprecipitation in mammalian cells. Methods Mol. Biol. 543:243-251.
    • (2009) Methods Mol. Biol. , vol.543 , pp. 243-251
    • Svotelis, A.1    Gevry, N.2    Gaudreau, L.3
  • 65
    • 79956064795 scopus 로고    scopus 로고
    • A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors
    • Tous C, et al. 2011. A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO J. 30:1953-1964.
    • (2011) EMBO J , vol.30 , pp. 1953-1964
    • Tous, C.1
  • 66
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang ET, et al. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456:470-476.
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1
  • 67
    • 34548758543 scopus 로고    scopus 로고
    • Splicing in disease: disruption of the splicing code and the decoding machinery
    • Wang GS, Cooper TA. 2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8:749-761.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 749-761
    • Wang, G.S.1    Cooper, T.A.2
  • 68
    • 0034547198 scopus 로고    scopus 로고
    • Retinoic acid-induced apoptotic pathway in T-cell lymphoma: Identification of four groups of genes with differential biological functions
    • Wang KC, Cheng AL, Chuang SE, Hsu HC, Su IJ. 2000. Retinoic acid-induced apoptotic pathway in T-cell lymphoma: Identification of four groups of genes with differential biological functions. Exp. Hematol. 28:1441-1450.
    • (2000) Exp. Hematol. , vol.28 , pp. 1441-1450
    • Wang, K.C.1    Cheng, A.L.2    Chuang, S.E.3    Hsu, H.C.4    Su, I.J.5
  • 69
    • 80052033449 scopus 로고    scopus 로고
    • Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast
    • Wilhelm BT, et al. 2011. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast. Genome Biol. 12:R82.
    • (2011) Genome Biol , vol.12
    • Wilhelm, B.T.1
  • 70
    • 0028178987 scopus 로고
    • The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5= splice site selection in vivo
    • Yang X, et al. 1994. The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5= splice site selection in vivo. Proc. Natl. Acad. Sci. U. S. A. 91:6924-6928.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 6924-6928
    • Yang, X.1
  • 71
    • 0029959435 scopus 로고    scopus 로고
    • The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins
    • Yuryev A, et al. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. U. S. A. 93:6975-6980.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 6975-6980
    • Yuryev, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.