-
2
-
-
67650299463
-
Control of alternative splicing through siRNAmediated transcriptional gene silencing
-
Allo M, et al. 2009. Control of alternative splicing through siRNAmediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16: 717-724.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 717-724
-
-
Allo, M.1
-
3
-
-
0027282044
-
bcl- x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death
-
Boise LH, et al. 1993. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597-608.
-
(1993)
Cell
, vol.74
, pp. 597-608
-
-
Boise, L.H.1
-
4
-
-
0030844256
-
A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II
-
Bourquin JP, et al. 1997. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Nucleic Acids Res. 25:2055-2061.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 2055-2061
-
-
Bourquin, J.P.1
-
5
-
-
0036534129
-
Alternative splicing: multiple control mechanisms and involvement in human disease
-
Caceres JF, Kornblihtt AR. 2002. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18:186-193.
-
(2002)
Trends Genet
, vol.18
, pp. 186-193
-
-
Caceres, J.F.1
Kornblihtt, A.R.2
-
6
-
-
78649289872
-
Global analysis of nascent RNA reveals transcriptional pausing in terminal exons
-
Carrillo Oesterreich F, Preibisch S, Neugebauer KM. 2010. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40:571-581.
-
(2010)
Mol. Cell
, vol.40
, pp. 571-581
-
-
Carrillo Oesterreich, F.1
Preibisch, S.2
Neugebauer, K.M.3
-
7
-
-
0034255028
-
Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II
-
Carty SM, Goldstrohm AC, Suñé C, Garcia-Blanco MA, Greenleaf AL. 2000. Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 97:9015-9020.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 9015-9020
-
-
Carty, S.M.1
Goldstrohm, A.C.2
Suñé, C.3
Garcia-Blanco, M.A.4
Greenleaf, A.L.5
-
8
-
-
1242309371
-
The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability
-
Chapman RD, Palancade B, Lang A, Bensaude O, Eick D. 2004. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res. 32:35-44.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 35-44
-
-
Chapman, R.D.1
Palancade, B.2
Lang, A.3
Bensaude, O.4
Eick, D.5
-
9
-
-
0034808138
-
Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae
-
Chavez S, Garcia-Rubio M, Prado F, Aguilera A. 2001. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 21:7054-7064.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 7054-7064
-
-
Chavez, S.1
Garcia-Rubio, M.2
Prado, F.3
Aguilera, A.4
-
10
-
-
0029915243
-
Drosophila RNA polymerase II mutants that affect transcription elongation
-
Chen Y, Chafin D, Price DH, Greenleaf AL. 1996. Drosophila RNA polymerase II mutants that affect transcription elongation. J. Biol. Chem. 271:5993-5999.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 5993-5999
-
-
Chen, Y.1
Chafin, D.2
Price, D.H.3
Greenleaf, A.L.4
-
11
-
-
33846001366
-
The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing
-
Cheng D, Cote J, Shaaban S, Bedford MT. 2007. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell 25:71-83.
-
(2007)
Mol. Cell
, vol.25
, pp. 71-83
-
-
Cheng, D.1
Cote, J.2
Shaaban, S.3
Bedford, M.T.4
-
12
-
-
0022345860
-
A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro
-
Coulter DE, Greenleaf AL. 1985. A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro. J. Biol. Chem. 260:13190-13198.
-
(1985)
J. Biol. Chem.
, vol.260
, pp. 13190-13198
-
-
Coulter, D.E.1
Greenleaf, A.L.2
-
13
-
-
38649096939
-
A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo
-
Damgaard CK, et al. 2008. A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol. Cell 29:271-278.
-
(2008)
Mol. Cell
, vol.29
, pp. 271-278
-
-
Damgaard, C.K.1
-
14
-
-
33745860086
-
Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions
-
Deckert J, et al. 2006. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26:5528-5543.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 5528-5543
-
-
Deckert, J.1
-
15
-
-
33750596100
-
RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20
-
de la Mata M, Kornblihtt AR. 2006. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat. Struct. Mol. Biol. 13:973-980.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 973-980
-
-
de la Mata, M.1
Kornblihtt, A.R.2
-
16
-
-
0141888375
-
A slow RNA polymerase II affects alternative splicing in vivo
-
de la Mata M, et al. 2003. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12:525-532.
-
(2003)
Mol. Cell
, vol.12
, pp. 525-532
-
-
de la Mata, M.1
-
17
-
-
0024299506
-
Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase?
-
Eperon LP, Graham IR, Griffiths AD, Eperon IC. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393-401.
-
(1988)
Cell
, vol.54
, pp. 393-401
-
-
Eperon, L.P.1
Graham, I.R.2
Griffiths, A.D.3
Eperon, I.C.4
-
18
-
-
0036829698
-
Promoter proximal splice sites enhance transcription
-
Furger A, O'Sullivan JM, Binnie A, Lee BA, Proudfoot NJ. 2002. Promoter proximal splice sites enhance transcription. Genes Dev. 16: 2792-2799.
-
(2002)
Genes Dev
, vol.16
, pp. 2792-2799
-
-
Furger, A.1
O'Sullivan, J.M.2
Binnie, A.3
Lee, B.A.4
Proudfoot, N.J.5
-
20
-
-
20744450092
-
Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x
-
Garneau D, Revil T, Fisette JF, Chabot B. 2005. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J. Biol. Chem. 280:22641-22650.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 22641-22650
-
-
Garneau, D.1
Revil, T.2
Fisette, J.F.3
Chabot, B.4
-
21
-
-
0028967183
-
RNA polymerase II C-terminal domain required for enhancer-driven transcription
-
Gerber HP, et al. 1995. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374:660-662.
-
(1995)
Nature
, vol.374
, pp. 660-662
-
-
Gerber, H.P.1
-
22
-
-
78149477660
-
Pausing of RNA polymerase II disrupts DNAspecified nucleosome organization to enable precise gene regulation
-
Gilchrist DA, et al. 2010. Pausing of RNA polymerase II disrupts DNAspecified nucleosome organization to enable precise gene regulation. Cell 143:540-551.
-
(2010)
Cell
, vol.143
, pp. 540-551
-
-
Gilchrist, D.A.1
-
23
-
-
0034774728
-
The transcription elongation factor CA150 interacts withRNApolymerase II and the pre-mRNA splicing factor SF1
-
Goldstrohm AC, Albrecht TR, Suñé C, Bedford MT, Garcia-Blanco MA. 2001. The transcription elongation factor CA150 interacts withRNApolymerase II and the pre-mRNA splicing factor SF1. Mol. Cell. Biol. 21:7617-7628.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 7617-7628
-
-
Goldstrohm, A.C.1
Albrecht, T.R.2
Suñé, C.3
Bedford, M.T.4
Garcia-Blanco, M.A.5
-
24
-
-
0035904279
-
Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing
-
Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA. 2001. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 277:31-47.
-
(2001)
Gene
, vol.277
, pp. 31-47
-
-
Goldstrohm, A.C.1
Greenleaf, A.L.2
Garcia-Blanco, M.A.3
-
25
-
-
45549093494
-
Promoter elements associated with RNA Pol II stalling in the Drosophila embryo
-
Hendrix DA, Hong JW, Zeitlinger J, Rokhsar DS, Levine MS. 2008. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc. Natl. Acad. Sci. U. S. A. 105:7762-7767.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 7762-7767
-
-
Hendrix, D.A.1
Hong, J.W.2
Zeitlinger, J.3
Rokhsar, D.S.4
Levine, M.S.5
-
26
-
-
0041305816
-
Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae
-
Howe KJ, Kane CM, Ares M, Jr. 2003. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9:993-1006.
-
(2003)
RNA
, vol.9
, pp. 993-1006
-
-
Howe, K.J.1
Kane, C.M.2
Ares Jr., M.3
-
27
-
-
0035887299
-
Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing
-
Kadener S, et al. 2001. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J. 20:5759-5768.
-
(2001)
EMBO J
, vol.20
, pp. 5759-5768
-
-
Kadener, S.1
-
28
-
-
0031022189
-
Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of premRNA
-
Kim E, Du L, Bregman DB, Warren SL. 1997. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of premRNA. J. Cell Biol. 136:19-28.
-
(1997)
J. Cell Biol.
, vol.136
, pp. 19-28
-
-
Kim, E.1
Du, L.2
Bregman, D.B.3
Warren, S.L.4
-
29
-
-
42449089029
-
Coupling transcription and alternative splicing
-
Kornblihtt AR. 2007. Coupling transcription and alternative splicing. Adv. Exp. Med. Biol. 623:175-189.
-
(2007)
Adv. Exp. Med. Biol.
, vol.623
, pp. 175-189
-
-
Kornblihtt, A.R.1
-
30
-
-
79955795581
-
Paused RNA polymerase II as a developmental checkpoint
-
Levine M. 2011. Paused RNA polymerase II as a developmental checkpoint. Cell 145:502-511.
-
(2011)
Cell
, vol.145
, pp. 502-511
-
-
Levine, M.1
-
31
-
-
68549104404
-
The sequence alignment/map format and SAM tools
-
Li H, et al. 2009. The sequence alignment/map format and SAM tools. Bioinformatics 25:2078 -2079.
-
(2009)
Bioinformatics
, vol.25
, pp. 2078-2079
-
-
Li, H.1
-
32
-
-
33749054403
-
Splicing regulation in neurologic disease
-
Licatalosi DD, Darnell RB. 2006. Splicing regulation in neurologic disease. Neuron 52:93-101.
-
(2006)
Neuron
, vol.52
, pp. 93-101
-
-
Licatalosi, D.D.1
Darnell, R.B.2
-
33
-
-
4744355045
-
The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo
-
Lin KT, Lu RM, Tarn WY. 2004. The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol. Cell. Biol. 24:9176-9185.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9176-9185
-
-
Lin, K.T.1
Lu, R.M.2
Tarn, W.Y.3
-
34
-
-
49449116959
-
The splicing factor SC35 has an active role in transcriptional elongation
-
Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. 2008. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15:819-826.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 819-826
-
-
Lin, S.1
Coutinho-Mansfield, G.2
Wang, D.3
Pandit, S.4
Fu, X.D.5
-
35
-
-
33748351186
-
Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells
-
Listerman I, Sapra AK, Neugebauer KM. 2006. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13:815-822.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 815-822
-
-
Listerman, I.1
Sapra, A.K.2
Neugebauer, K.M.3
-
36
-
-
78650961149
-
Epigenetics in alternative pre-mRNA splicing
-
Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. 2011. Epigenetics in alternative pre-mRNA splicing. Cell 144:16 -26.
-
(2011)
Cell
, vol.144
, pp. 16-26
-
-
Luco, R.F.1
Allo, M.2
Schor, I.E.3
Kornblihtt, A.R.4
Misteli, T.5
-
37
-
-
0037073946
-
Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome
-
Makarov EM, et al. 2002. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298:2205-2208.
-
(2002)
Science
, vol.298
, pp. 2205-2208
-
-
Makarov, E.M.1
-
38
-
-
0031037856
-
The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
-
McCracken S, et al. 1997a. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357-361.
-
(1997)
Nature
, vol.385
, pp. 357-361
-
-
McCracken, S.1
-
39
-
-
0034637472
-
Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription
-
Meininghaus M, Chapman RD, Horndasch M, Eick D. 2000. Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J. Biol. Chem. 275:24375-24382.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 24375-24382
-
-
Meininghaus, M.1
Chapman, R.D.2
Horndasch, M.3
Eick, D.4
-
40
-
-
0033153543
-
RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo
-
Misteli T, Spector DL. 1999. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3:697-705.
-
(1999)
Mol. Cell
, vol.3
, pp. 697-705
-
-
Misteli, T.1
Spector, D.L.2
-
41
-
-
60149110358
-
Pre-mRNA processing reaches back to transcription and ahead to translation
-
Moore MJ, Proudfoot NJ. 2009. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688-700.
-
(2009)
Cell
, vol.136
, pp. 688-700
-
-
Moore, M.J.1
Proudfoot, N.J.2
-
42
-
-
0034704145
-
The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II
-
Morris DP, Greenleaf AL. 2000. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275:39935-39943.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 39935-39943
-
-
Morris, D.P.1
Greenleaf, A.L.2
-
43
-
-
0029775622
-
A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix
-
Mortillaro MJ, et al. 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. U. S. A. 93:8253-8257.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 8253-8257
-
-
Mortillaro, M.J.1
-
44
-
-
77956183151
-
The carboxy terminal domain of RNA polymerase II and alternative splicing
-
Munoz MJ, de la Mata M, Kornblihtt AR. 2010. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem. Sci. 35:497-504.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 497-504
-
-
Munoz, M.J.1
de la Mata, M.2
Kornblihtt, A.R.3
-
45
-
-
65549147264
-
DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation
-
Munoz MJ, et al. 2009. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137:708-720.
-
(2009)
Cell
, vol.137
, pp. 708-720
-
-
Munoz, M.J.1
-
46
-
-
0036674179
-
High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5′ splice site selection in support of a common looping out and repression mechanism
-
Nasim FU, Hutchison S, Cordeau M, Chabot B. 2002. High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5′ splice site selection in support of a common looping out and repression mechanism. RNA. 8:1078-1089.
-
(2002)
RNA
, vol.8
, pp. 1078-1089
-
-
Nasim, F.U.1
Hutchison, S.2
Cordeau, M.3
Chabot, B.4
-
47
-
-
0031711073
-
Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex
-
Neubauer G, et al. 1998. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet. 20:46-50.
-
(1998)
Nat. Genet.
, vol.20
, pp. 46-50
-
-
Neubauer, G.1
-
48
-
-
0037044769
-
Transcriptional activators differ in their abilities to control alternative splicing
-
Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR. 2002. Transcriptional activators differ in their abilities to control alternative splicing. J. Biol. Chem. 277:43110-43114.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 43110-43114
-
-
Nogues, G.1
Kadener, S.2
Cramer, P.3
Bentley, D.4
Kornblihtt, A.R.5
-
50
-
-
56749098074
-
Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing
-
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 2008. Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing. Nat. Genet. 40:1413-1415.
-
(2008)
Nat. Genet.
, vol.40
, pp. 1413-1415
-
-
Pan, Q.1
Shai, O.2
Lee, L.J.3
Frey, B.J.4
Blencowe, B.J.5
-
51
-
-
43149086129
-
Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing
-
Pearson JL, Robinson TJ, Munoz MJ, Kornblihtt AR, Garcia-Blanco MA. 2008. Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing. J. Biol. Chem. 283:7949-7961.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 7949-7961
-
-
Pearson, J.L.1
Robinson, T.J.2
Munoz, M.J.3
Kornblihtt, A.R.4
Garcia-Blanco, M.A.5
-
52
-
-
0036674269
-
Large-scale proteomic analysis of the human spliceosome
-
Rappsilber J, Ryder U, Lamond AI, Mann M. 2002. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12:1231-1245.
-
(2002)
Genome Res
, vol.12
, pp. 1231-1245
-
-
Rappsilber, J.1
Ryder, U.2
Lamond, A.I.3
Mann, M.4
-
53
-
-
0024312321
-
RNA secondary structure is an integral part of the in vitro mechanism of attenuation in simian virus 40
-
Resnekov O, Kessler M, Aloni Y. 1989. RNA secondary structure is an integral part of the in vitro mechanism of attenuation in simian virus 40. J. Biol. Chem. 264:9953-9959.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 9953-9959
-
-
Resnekov, O.1
Kessler, M.2
Aloni, Y.3
-
54
-
-
69249087295
-
Heterogeneous nuclear ribonucleoprotein K represses the production of proapoptotic Bcl-xS splice isoform
-
Revil T, Pelletier J, Toutant J, Cloutier A, Chabot B. 2009. Heterogeneous nuclear ribonucleoprotein K represses the production of proapoptotic Bcl-xS splice isoform. J. Biol. Chem. 284:21458-21467.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 21458-21467
-
-
Revil, T.1
Pelletier, J.2
Toutant, J.3
Cloutier, A.4
Chabot, B.5
-
55
-
-
37149014737
-
Protein kinase C-dependent control of Bcl-x alternative splicing
-
Revil T, et al. 2007. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol. Cell. Biol. 27:8431-8441.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8431-8441
-
-
Revil, T.1
-
56
-
-
0032534537
-
Co-transcriptional commitment to alternative splice site selection
-
Roberts GC, Gooding C, Mak HY, Proudfoot NJ, Smith CW. 1998. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 26:5568-5572.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 5568-5572
-
-
Roberts, G.C.1
Gooding, C.2
Mak, H.Y.3
Proudfoot, N.J.4
Smith, C.W.5
-
57
-
-
33745473130
-
Human transcription elongation factor CA150 localizes to splicing factorrich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions
-
Sánchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Suñé C. 2006. Human transcription elongation factor CA150 localizes to splicing factorrich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol. Cell. Biol. 26:4998-5014.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 4998-5014
-
-
Sánchez-Alvarez, M.1
Goldstrohm, A.C.2
Garcia-Blanco, M.A.3
Suñé, C.4
-
58
-
-
77952082869
-
Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1)
-
Sánchez-Alvarez M, Montes M, Sánchez-Hernández N, Hernández-Munain C, Suñé C. 2010. Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1). J. Biol. Chem. 285:15220-15233.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 15220-15233
-
-
Sánchez-Alvarez, M.1
Montes, M.2
Sánchez-Hernández, N.3
Hernández-Munain, C.4
Suñé, C.5
-
59
-
-
78650930370
-
The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x
-
Shkreta L, Michelle L, Toutant J, Tremblay ML, Chabot B. 2011. The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J. Biol. Chem. 286:331-340.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 331-340
-
-
Shkreta, L.1
Michelle, L.2
Toutant, J.3
Tremblay, M.L.4
Chabot, B.5
-
60
-
-
70350754211
-
Rates of in situ transcription and splicing in large human genes
-
Singh J, Padgett RA. 2009. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16:1128 -1133.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1128-1133
-
-
Singh, J.1
Padgett, R.A.2
-
61
-
-
6344277922
-
FF domains of CA150 bind transcription and splicing factors through multiple weak interactions
-
Smith MJ, Kulkarni S, Pawson T. 2004. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol. Cell. Biol. 24:9274-9285.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9274-9285
-
-
Smith, M.J.1
Kulkarni, S.2
Pawson, T.3
-
62
-
-
0345161783
-
Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner
-
Suñé C, Garcia-Blanco MA. 1999. Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol. Cell. Biol. 19:4719-4728.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 4719-4728
-
-
Suñé, C.1
Garcia-Blanco, M.A.2
-
63
-
-
1842287996
-
CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription
-
Suñé C, et al. 1997. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 17:6029-6039.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 6029-6039
-
-
Suñé, C.1
-
64
-
-
67649112275
-
Chromatin immunoprecipitation in mammalian cells
-
Svotelis A, Gevry N, Gaudreau L. 2009. Chromatin immunoprecipitation in mammalian cells. Methods Mol. Biol. 543:243-251.
-
(2009)
Methods Mol. Biol.
, vol.543
, pp. 243-251
-
-
Svotelis, A.1
Gevry, N.2
Gaudreau, L.3
-
65
-
-
79956064795
-
A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors
-
Tous C, et al. 2011. A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO J. 30:1953-1964.
-
(2011)
EMBO J
, vol.30
, pp. 1953-1964
-
-
Tous, C.1
-
66
-
-
56549101959
-
Alternative isoform regulation in human tissue transcriptomes
-
Wang ET, et al. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456:470-476.
-
(2008)
Nature
, vol.456
, pp. 470-476
-
-
Wang, E.T.1
-
67
-
-
34548758543
-
Splicing in disease: disruption of the splicing code and the decoding machinery
-
Wang GS, Cooper TA. 2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8:749-761.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 749-761
-
-
Wang, G.S.1
Cooper, T.A.2
-
68
-
-
0034547198
-
Retinoic acid-induced apoptotic pathway in T-cell lymphoma: Identification of four groups of genes with differential biological functions
-
Wang KC, Cheng AL, Chuang SE, Hsu HC, Su IJ. 2000. Retinoic acid-induced apoptotic pathway in T-cell lymphoma: Identification of four groups of genes with differential biological functions. Exp. Hematol. 28:1441-1450.
-
(2000)
Exp. Hematol.
, vol.28
, pp. 1441-1450
-
-
Wang, K.C.1
Cheng, A.L.2
Chuang, S.E.3
Hsu, H.C.4
Su, I.J.5
-
69
-
-
80052033449
-
Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast
-
Wilhelm BT, et al. 2011. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast. Genome Biol. 12:R82.
-
(2011)
Genome Biol
, vol.12
-
-
Wilhelm, B.T.1
-
70
-
-
0028178987
-
The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5= splice site selection in vivo
-
Yang X, et al. 1994. The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5= splice site selection in vivo. Proc. Natl. Acad. Sci. U. S. A. 91:6924-6928.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 6924-6928
-
-
Yang, X.1
-
71
-
-
0029959435
-
The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins
-
Yuryev A, et al. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. U. S. A. 93:6975-6980.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 6975-6980
-
-
Yuryev, A.1
|