메뉴 건너뛰기




Volumn , Issue , 2011, Pages 721-728

Learning aggregations of ground-motion models using data

Author keywords

[No Author keywords available]

Indexed keywords

MACHINE LEARNING;

EID: 84856717990     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1201/b11332-109     Document Type: Conference Paper
Times cited : (3)

References (36)
  • 1
    • 48549090821 scopus 로고    scopus 로고
    • Summary of the abra-hamson & Silva NGA ground motion relations
    • Abrahamson, N. & W. Silva (2008). Summary of the Abra-hamson & Silva NGA Ground Motion Relations. Earthquake Spectra 24(1), 67-97.
    • (2008) Earthquake Spectra , vol.24 , Issue.1 , pp. 67-97
    • Abrahamson, N.1    Silva, W.2
  • 2
    • 77950554960 scopus 로고    scopus 로고
    • Empirical equations for the prediction of PGA, PGV, and spectral accelerations in europe, the mediterranean region, and the middle east
    • Akkar, S. & J. Bommer (2010). Empirical Equations for the Prediction of PGA, PGV, and Spectral Accelerations in Europe, the Mediterranean Region, and the Middle East. Seismological Research Letters 81(2), 195-206.
    • (2010) Seismological Research Letters , vol.81 , Issue.2 , pp. 195-206
    • Akkar, S.1    Bommer, J.2
  • 3
    • 67651057011 scopus 로고    scopus 로고
    • Evaluation of ground-motion modeling techniques for use in global shakemap-A critique of instrumental ground-motion prediction equations, peak ground motion to macroseismic intensity conversions, and macroseismic intensity predictions in different tectonic settings
    • Allen, T. & D. Wald (2009). Evaluation of Ground-Motion Modeling Techniques for Use in Global shakemap-A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings. U.S. Geological Survey Open-File Report 2009-1047, 114 p.
    • (2009) U.S. Geological Survey Open-File Report 2009-1047 , pp. 114
    • Allen, T.1    Wald, D.2
  • 4
    • 0035835579 scopus 로고    scopus 로고
    • Ensembles of classifiers for morphological galaxy classification
    • Bazell, D. & D.W. Aha (2001). Ensembles of classifiers for morphological galaxy classification. The Astrophysical Journal 548(1), 219.
    • (2001) The Astrophysical Journal , vol.548 , Issue.1 , pp. 219
    • Bazell, D.1    Aha, D.W.2
  • 6
    • 33846097127 scopus 로고    scopus 로고
    • Why do modern probabilistic seismic-hazard analyses often lead to in- creased hazard estimates?
    • Bommer, J. & N. Abrahamson (2006). Why do modern probabilistic seismic-hazard analyses often lead to in- creased hazard estimates? Bulletin of the Seismological Society of America 96(6), 1967-1997.
    • (2006) Bulletin of the Seismological Society of America , vol.96 , Issue.6 , pp. 1967-1997
    • Bommer, J.1    Abrahamson, N.2
  • 7
    • 58049108301 scopus 로고    scopus 로고
    • The use and misuse of logic trees in probabilistic seismic hazard analysis
    • Bommer, J.J. & F. Scherbaum (2008). The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthquake Spectra 24(4), 997-1009.
    • (2008) Earthquake Spectra , vol.24 , Issue.4 , pp. 997-1009
    • Bommer, J.J.1    Scherbaum, F.2
  • 8
    • 48549092394 scopus 로고    scopus 로고
    • Ground motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s
    • Boore, D. & G. Atkinson (2008). Ground Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s. Earthquake Spectra 24(1), 99-138.
    • (2008) Earthquake Spectra , vol.24 , Issue.1 , pp. 99-138
    • Boore, D.1    Atkinson, G.2
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 11
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • March
    • Brown, G., J. Wyatt, R. Harris, & X. Yao (2005, March). Diversity creation methods: A survey and categorisation. Journal of Information Fusion 6(1), 5-20.
    • (2005) Journal of Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 12
    • 38549176240 scopus 로고    scopus 로고
    • NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5%-damped linear elastic response spectra for periods ranging from 0.01 to 10 s
    • Campbell, K. & Y. Bozorgnia (2008). NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5%-Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s. Earthquake Spectra 24(1), 139-171.
    • (2008) Earthquake Spectra , vol.24 , Issue.1 , pp. 139-171
    • Campbell, K.1    Bozorgnia, Y.2
  • 13
    • 53349117235 scopus 로고    scopus 로고
    • Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records
    • Cauzzi, C. & E. Faccioli (2008). Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. Journal of Seismology 12(4), 453-475.
    • (2008) Journal of Seismology , vol.12 , Issue.4 , pp. 453-475
    • Cauzzi, C.1    Faccioli, E.2
  • 14
    • 48549085365 scopus 로고    scopus 로고
    • An NGA model for the average horizontal component of peak ground motion and response spectra
    • Chiou, B.S.-J. & R.R. Youngs (2008). An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra 24(1), 173-215.
    • (2008) Earthquake Spectra , vol.24 , Issue.1 , pp. 173-215
    • Chiou, B.S.-J.1    Youngs, R.R.2
  • 15
    • 78650077454 scopus 로고    scopus 로고
    • Ground-motion attenuation model for small-to-moderate shallow crustal earthquakes in califor-nia and its implications on regionalization of ground-motion prediction models
    • Chiou, B.S.-J., R.R. Youngs, N. Abrahamson, & K. Addo (2010). Ground-Motion Attenuation Model for Small-To-Moderate Shallow Crustal Earthquakes in Califor-nia and Its Implications on Regionalization of Ground-Motion Prediction Models. Earthquake Spectra.
    • (2010) Earthquake Spectra
    • Chiou, B.S.-J.1    Youngs, R.R.2    Abrahamson, N.3    Addo, K.4
  • 16
    • 54949099594 scopus 로고    scopus 로고
    • On the discrepancy of recent european ground-motion observations and predictions from empirical models: Analysis of KiK-net accelerometric data and point-sources stochastic simulations
    • Cotton, F., G. Pousse, F. Bonilla, & F. Scherbaum (2008). On the Discrepancy of Recent European Ground-Motion Observations and Predictions from Empirical Models: Analysis of KiK-net Accelerometric Data and Point-Sources Stochastic Simulations. Bulletin of the Seismological Society of America 98(5), 2244-2261.
    • (2008) Bulletin of the Seismological Society of America , vol.98 , Issue.5 , pp. 2244-2261
    • Cotton, F.1    Pousse, G.2    Bonilla, F.3    Scherbaum, F.4
  • 19
    • 0037400245 scopus 로고    scopus 로고
    • Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates
    • Douglas, J. (2003). Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews 61(1-2), 43-104.
    • (2003) Earth-Science Reviews , vol.61 , Issue.1-2 , pp. 43-104
    • Douglas, J.1
  • 20
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund, Y. & R.E. Schapire (1996). Experiments with a new boosting algorithm. In ICML, pp. 148-156.
    • (1996) ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 0346948514 scopus 로고    scopus 로고
    • Attenuation relation for west eurasia determined with recent near-fault records from california
    • Japan and Turkey
    • Fukushima, Y., C. Berge-Thierry, P. Volant, D.-A. Griot-Pommera, & F. Cotton (2003). Attenuation Relation for West Eurasia Determined with Recent Near-Fault Records from California, Japan and Turkey. Journal of Earthquake Engineering 7(4), 193-222.
    • (2003) Journal of Earthquake Engineering , vol.7 , Issue.4 , pp. 193-222
    • Fukushima, Y.1    Berge-Thierry, C.2    Volant, P.3    Griot-Pommera, D.-A.4    Cotton, F.5
  • 23
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the EM algorithm
    • Jordan, M.I. & R.A. Jacobs (1994). Hierarchical mixture of experts and the EM algorithm. Neural Computation 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 26
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu, Y. & X. Yao (1999). Ensemble learning via negative correlation. Neural Networks 12(10), 1399-1404.
    • (1999) Neural Networks , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 27
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility
    • Lunn, D.J., A. Thomas, N. Best, & D. Spiegelhalter (2000). WinBUGS - a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10(4), 325-337.
    • (2000) Statistics and Computing , vol.10 , Issue.4 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 28
    • 0004087397 scopus 로고
    • Probabilistic inference using markov chain monte carlo methods
    • Neal, R. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical report, Univ. Toronto.
    • (1993) Technical Report, Univ. Toronto.
    • Neal, R.1
  • 29
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • Chapman and Hall
    • Perrone, M.P. & L.N. Cooper (1993). When networks disagree: Ensemble methods for hybrid neural networks. In Neural Networks for Speech and Image Processing, pp. 126-142. Chapman and Hall.
    • (1993) Neural Networks for Speech and Image Processing , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 31
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R. (2006). Ensemble Based Systems in Decision Making. Ieee Circuits And Systems Magazine 6(3), 21-45.
    • (2006) Ieee Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 32
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • Rosen, B. (1996). Ensemble learning using decorrelated neural networks. Connection Science 8, 373-384.
    • (1996) Connection Science , vol.8 , pp. 373-384
    • Rosen, B.1
  • 33
    • 0032073506 scopus 로고    scopus 로고
    • Classification of seismic signals by integrating ensembles of neural networks
    • Shimshoni, Y. & N. Intrator (1996). Classification of seismic signals by integrating ensembles of neural networks. IEEE Trans. Signal Processing 46, 1194-1201.
    • (1996) IEEE Trans. Signal Processing , vol.46 , pp. 1194-1201
    • Shimshoni, Y.1    Intrator, N.2
  • 34
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • 3 Suppl
    • Tan, A.C. & D. Gilbert (2003). Ensemble machine learning on gene expression data for cancer classification. Applied bioinformatics 2(3 Suppl).
    • (2003) Applied Bioinformatics , vol.2
    • Tan, A.C.1    Gilbert, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.