메뉴 건너뛰기




Volumn 21, Issue 6, 2011, Pages 473-492

The artificial bee colony algorithm in training artificial neural network for oil spill detection

Author keywords

Artificial bee colony (ADC); Artificial neural network (ANN); Oil spill

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; DAMAGE DETECTION; DEEP NEURAL NETWORKS; EVOLUTIONARY ALGORITHMS; HEURISTIC ALGORITHMS; HEURISTIC METHODS; MARINE POLLUTION; NEURAL NETWORKS; OIL SPILLS; RADAR IMAGING; REMOTE SENSING; SATELLITE IMAGERY; SYNTHETIC APERTURE RADAR; TRACKING RADAR;

EID: 84856487667     PISSN: 12100552     EISSN: None     Source Type: Journal    
DOI: 10.14311/NNW.2011.21.028     Document Type: Article
Times cited : (24)

References (47)
  • 2
    • 85038470777 scopus 로고    scopus 로고
    • AMSA
    • AMSA, http://www.amsa.gov.au/marine.environment-protection/educational- resources-and Jnformation/teachers/the.erTects-of-oil-on-wildlife.asp
  • 4
    • 84856501365 scopus 로고    scopus 로고
    • Earth observation applications through systems and instruments of high performance computer
    • September- December, Matera, Italy
    • Bava J., Tristan O., Yasnikouski J.: Earth observation applications through systems and instruments of high performance computer. ASI/CONEA training course, September- December, Matera, Italy, 2002.
    • (2002) ASI/CONEA Training Course
    • Bava, J.1    Tristan, O.2    Yasnikouski, J.3
  • 6
    • 26444453630 scopus 로고    scopus 로고
    • Feature extraction for oil spill detection based on SAR images
    • Image Analysis: 14th Scandinavian Conference, SCIA 2005. Proceedings
    • Brekke C, Solbeig A. H. S.: Feature extraction for oil spill detection based on SAR images. SCIA 2005, LNCS, 3540, 2005a, pp. 75-84. (Pubitemid 41422651)
    • (2005) Lecture Notes in Computer Science , vol.3540 , pp. 75-84
    • Brekke, C.1    Solberg, A.H.S.2
  • 7
    • 13844255632 scopus 로고    scopus 로고
    • Oil spill detection by satellite remote sensing
    • DOI 10.1016/j.rse.2004.11.015, PII S0034425704003724
    • Brekke C, Solberg A. H. S.: Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95, 2005b, pp. 1-13. (Pubitemid 40240803)
    • (2005) Remote Sensing of Environment , vol.95 , Issue.1 , pp. 1-13
    • Brekke, C.1    Solberg, A.H.S.2
  • 9
    • 0003414693 scopus 로고
    • An Introduction (New York:Van Nostrand Reinhold)
    • Dayhof J.: Neural-Network Architectures: An Introduction (New York: Van Nostrand Reinhold), 1990.
    • (1990) Neural-Network Architectures
    • Dayhof, J.1
  • 12
    • 1342343252 scopus 로고    scopus 로고
    • Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches
    • Foody G. M.: Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based appioaches. Journal of Geographical Systems, 3, 2001, pp. 217-232. (Pubitemid 33725655)
    • (2001) Journal of Geographical Systems , vol.3 , Issue.3 , pp. 217-232
    • Foody, G.M.1
  • 13
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan M. T., Menhaj M. B.: Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 6, 1994, pp. 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 14
    • 84957061964 scopus 로고    scopus 로고
    • Operational satellite monitoring and detection for oil spill in offshore of United Arab Emirates
    • XXth ISPRS Congress, Istanbul, Turkey
    • Harahsheh H., EssaS., Shiobarac M., Nishidaid T., Onumad T.: Operational satellite monitoring and detection for oil spill in offshore of United Arab Emirates. XXth ISPRS Congress, Istanbul, Turkey, Proceedings of Commission VII, 2004, pp. 658-663.
    • (2004) Proceedings of Commission VII
    • Harahsheh, H.1    Essa, S.2    Shiobarac, M.3    Nishidaid, T.4    Onumad, T.5
  • 16
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick R.: Statistical and structural approaches to texture. Proceedings of IEEE, 5, 1979, pp. 786-803.
    • (1979) Proceedings of IEEE , vol.5 , pp. 786-803
    • Haralick, R.1
  • 17
    • 0004063090 scopus 로고    scopus 로고
    • (2nd Ed.), A Comprehensive Foundation (Upper Saddle River, NJ:Prentice Hall)
    • Haykin S. (2nd Ed.): Neural Networks: A Comprehensive Foundation (Upper Saddle River, NJ: Prentice Hall), 1999.
    • (1999) Neural Networks
    • Haykin, S.1
  • 19
    • 84856507026 scopus 로고    scopus 로고
    • (4th Ed.), Principles and Methods (John Wiley & Sons Inc.)
    • Johnson R. A., Bhattacharyya G. K. (4th Ed.): Statistics: Principles and Methods (John Wiley & Sons Inc.), 2000.
    • (2000) Statistics
    • Johnson, R.A.1    Bhattacharyya, G.K.2
  • 20
    • 35148827874 scopus 로고    scopus 로고
    • An idea based on honey bee swarm for numerical optimization
    • Erciyes University, Computer Engineering Department
    • Karaboga D.: An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Computer Engineering Department, 2005.
    • (2005) Technical Report-TR06
    • Karaboga, D.1
  • 21
    • 67349273050 scopus 로고    scopus 로고
    • Comparative study of artificial bee colony algorithm
    • Karaboga D., Akay B.: Comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214, 2009, pp. 108-132.
    • (2009) Applied Mathematics and Computation , vol.214 , pp. 108-132
    • Karaboga, D.1    Akay, B.2
  • 22
    • 35148821762 scopus 로고    scopus 로고
    • Powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm
    • Karaboga D., Basturk B.: A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization, 3, 2007a, pp. 459-171.
    • (2007) Journal of Global Optimization , vol.3 , pp. 459-171
    • Karaboga, D.1    Basturk, B.A.2
  • 24
    • 67651121862 scopus 로고    scopus 로고
    • Neural networks training by Artificial Bee Colony algorithm on pattern classification
    • Karaboga D., Ozturk C: Neural networks training by Artificial Bee Colony algorithm on pattern classification. Neural Networks World, 3, 2009, pp. 279-292.
    • (2009) Neural Networks World , vol.3 , pp. 279-292
    • Karaboga, D.1    Ozturk, C.2
  • 25
    • 77957901422 scopus 로고    scopus 로고
    • Ozturk CA novel clustering approach: Artificial Bee Colony (ABC) algorithm
    • Karaboga D., Ozturk C: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Applied Soft Computing, 1, 2011, pp. 652-657.
    • Applied Soft Computing , vol.1 , Issue.2011 , pp. 652-657
    • Karaboga, D.1
  • 27
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial neural networks in land cover classification
    • Kavzoglu T., Mather P. M.: The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24, 2003, pp. 4907-4938.
    • (2003) International Journal of Remote Sensing , vol.24
    • Kavzoglu, T.1    Mather, P.M.2
  • 28
    • 33645538624 scopus 로고    scopus 로고
    • Kiranoudis OAutomatic identification of oil spills on satellite images
    • Keramitsoglou I., Cartalis C, Kiranoudis O: Automatic identification of oil spills on satellite images. Environmental Modeling and Software, 21, 2005, pp. 640-652.
    • (2005) Environmental Modeling and Software , vol.21
    • Keramitsoglou, I.1    Cartalis, C.2
  • 29
    • 23144448840 scopus 로고    scopus 로고
    • Performance of the Levenberg-Marquardt neural network training method in electronic nose applications
    • DOI 10.1016/j.snb.2005.01.008, PII S0925400505000961
    • Kermani B. G., Schiffman S. S., Nagle H. T.: Performance of the Levenberg Marquardt neural network training method in electronic nose applications. Sensors and Actuators B: Chemical, 1, 2005, pp. 13-22. (Pubitemid 41085200)
    • (2005) Sensors and Actuators, B: Chemical , vol.110 , Issue.1 , pp. 13-22
    • Kermani, B.G.1    Schiffman, S.S.2    Nagle, H.T.3
  • 30
    • 70349647885 scopus 로고    scopus 로고
    • Comparison of RBF neural network training algorithms for inertial sensor based terrain classification
    • Kurbaii T., Besdok E.: A comparison of RBF neural network training algorithms for inertial sensor based terrain classification. Sensors, 9, 2009, pp. 6312-6329.
    • (2009) Sensors , vol.9 , pp. 6312-6329
    • Kurbaii, T.1    Besdok, E.A.2
  • 32
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas J. F., Flores J. J.: The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 3, 2008, pp. 617-663.
    • (2008) International Journal of Remote Sensing , vol.3 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 33
    • 85038468025 scopus 로고    scopus 로고
    • (http://invpprograms.coin/help/mvpstats/distributions/ KurtosisCriticalValues), MVP Program
    • MVP Program, 2010, (http://invpprograms.com/help/mvpstats/distributions/ SkewnessCriticalValues) (http://invpprograms.coin/help/mvpstats/distributions/ KurtosisCriticalValues).
    • (2010)
  • 34
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • Paola J. D., Schowengerdt R. A.: A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33, 1995, pp. 981-996.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 36
    • 0022471098 scopus 로고
    • Learning representations by backpropagation errors
    • Rumelhart D. E., Hinton G. E., Williams R. J.: Learning representations by backpropagation errors. Nature, 323, 1986, pp. 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 38
    • 54949108680 scopus 로고    scopus 로고
    • Oil spill mapping in the western part of the East China Sea using synthetic aperture radar imagery
    • Shi L., Ivanov A., Yu. II. M., Zhao C: Oil spill mapping in the western part of the East China Sea using synthetic aperture radar imagery. International Journal of Remote Sensing, 21, 2008, pp. 6315-6329.
    • (2008) International Journal of Remote Sensing , vol.21 , pp. 6315-6329
    • Shi, L.1    Ivanov, A.2    Yu II, M.3    Zhao, C.4
  • 42
    • 0035882616 scopus 로고    scopus 로고
    • Forest fire analysis with remote sensing data
    • Sunar F., Ozkan O: Forest fire analysis with remote sensing data. International Journal of Remote Sensing, 22, 2001, pp. 2265-2277. (Pubitemid 32621031)
    • (2001) International Journal of Remote Sensing , vol.22 , Issue.12 , pp. 2265-2277
    • Sunar, F.1    Ozkan, C.2
  • 43
    • 55249117307 scopus 로고    scopus 로고
    • Oil spill detection by SAR images: Dark formation detection feature extraction and classification algorithms
    • Topouzelis K. N.: Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors, 10, 2008, pp. 6642-6659.
    • (2008) Sensors , vol.10 , pp. 6642-6659
    • Topouzelis, K.N.1
  • 44
    • 67650650025 scopus 로고    scopus 로고
    • Investigation of genetic algorithms contribution to feature selection for oil spill detection
    • Topouzelis K., Stathakis D., Karathanassi V.: Investigation of genetic algorithms contribution to feature selection for oil spill detection. International Journal of Remote Sensing, 3, 2009, pp. 611-625.
    • (2009) International Journal of Remote Sensing , vol.3 , pp. 611-625
    • Topouzelis, K.1    Stathakis, D.2    Karathanassi, V.3
  • 45
    • 84879954283 scopus 로고    scopus 로고
    • Tree species classification using ERS SAR and MODIS NDVI images
    • XXth ISPRS Congress, Istanbul, Turkey
    • Toruiii M., Luninie J., Pyysalo U., Patrikainen N., Luojus K.: Tree species classification using ERS SAR and MODIS NDVI images, XXth ISPRS Congress, Istanbul, Turkey, Proceedings of Commission VII, 2004, pp. 927-932.
    • (2004) Proceedings of Commission , vol.7 , pp. 927-932
    • Toruiii, M.1    Luninie, J.2    Pyysalo, U.3    Patrikainen, N.4    Luojus, K.5
  • 46
    • 0001886404 scopus 로고    scopus 로고
    • On Overfitting and the efective number of hidden units
    • (Hillsdale NJ)
    • Weigend A.: On Overfitting and the efective number of hidden units. Proceedings of the Connectionist Models Summer School, (Hillsdale, NJ), 2004, pp. 335-342.
    • (2004) Proceedings of the Connectionist Models Summer School , pp. 335-342
    • Weigend, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.