메뉴 건너뛰기




Volumn 189, Issue , 2012, Pages 233-254

Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability

Author keywords

All clique problem; Eigenvalues and eigenvector; Protein complexes; Protein protein interaction network

Indexed keywords

ALL-CLIQUE PROBLEM; BENCHMARK DATA; BIOLOGICAL NETWORKS; BIOLOGICAL PROCESS; EIGENVALUES; EIGENVALUES AND EIGENVECTORS; MAXIMAL CLIQUE; PROTEIN COMPLEXES; PROTEIN INTERACTION NETWORKS; PROTEIN-PROTEIN INTERACTION NETWORKS; PROTEIN-PROTEIN INTERACTIONS; ROBUSTNESS ANALYSIS; SUBGRAPHS; TOPOLOGICAL INFORMATION; VIRTUAL NETWORKS;

EID: 84855901999     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.11.033     Document Type: Article
Times cited : (50)

References (66)
  • 1
    • 33645830948 scopus 로고    scopus 로고
    • CFinder: Locating cliques and overlapping modules in biological networks
    • B. Adamcsek, G. Palla, I.J. Farkas, I. Derényi, and T. Vicsek CFinder: locating cliques and overlapping modules in biological networks Bioinformatics 22 8 2006 1021 1023
    • (2006) Bioinformatics , vol.22 , Issue.8 , pp. 1021-1023
    • Adamcsek, B.1    Palla, G.2    Farkas, I.J.3    Derényi, I.4    Vicsek, T.5
  • 2
    • 78449313542 scopus 로고    scopus 로고
    • Noise-robust algorithm for identifying functionally associated biclusters from gene expression data
    • J. Ahn, Y. Yoon, and S. Park Noise-robust algorithm for identifying functionally associated biclusters from gene expression data Inform. Sci. 181 3 2011 435 449
    • (2011) Inform. Sci. , vol.181 , Issue.3 , pp. 435-449
    • Ahn, J.1    Yoon, Y.2    Park, S.3
  • 4
    • 33744805096 scopus 로고    scopus 로고
    • Development and implementation of an algorithm for detection of protein complexes in large interaction networks
    • M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya Development and implementation of an algorithm for detection of protein complexes in large interaction networks BMC Bioinform. 7 2006 207
    • (2006) BMC Bioinform. , vol.7 , pp. 207
    • Altaf-Ul-Amin, M.1    Shinbo, Y.2    Mihara, K.3    Kurokawa, K.4    Kanaya, S.5
  • 5
    • 34249851161 scopus 로고    scopus 로고
    • Clustering by common friends finds locally significant proteins mediating modules
    • DOI 10.1093/bioinformatics/btm064
    • B. Andreopoulos, A. An, X. Wang, M. Faloutsos, and M. Schroeder Clustering by common friends finds locally significant proteins mediating modules BMC Bioinform. 23 9 2007 1124 1131 (Pubitemid 47050564)
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 1124-1131
    • Andreopoulos, B.1    An, A.2    Wang, X.3    Faloutsos, M.4    Schroeder, M.5
  • 6
    • 33645156787 scopus 로고    scopus 로고
    • Synchronization reveals topological scales in complex networks
    • A. Arenas, A. Díaz-Guilera, and C.J. Pérez-Vicente Synchronization reveals topological scales in complex networks Phys. Rev. Lett. 96 11 2005 114102
    • (2005) Phys. Rev. Lett. , vol.96 , Issue.11 , pp. 114102
    • Arenas, A.1    Díaz-Guilera, A.2    Pérez-Vicente, C.J.3
  • 7
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • G. Bader, and C. Hogue An automated method for finding molecular complexes in large protein interaction networks BMC Bioinform. 10 2003 169
    • (2003) BMC Bioinform. , vol.10 , pp. 169
    • Bader, G.1    Hogue, C.2
  • 8
    • 33748456977 scopus 로고    scopus 로고
    • Greedy-type resistance of combinatorial problems
    • DOI 10.1016/j.disopt.2006.03.001, PII S1572528606000430
    • G. Bendall, and F. Margot Greedy type resistance of combinatorial problems Discrete Optim. 3 2006 288 298 (Pubitemid 44354336)
    • (2006) Discrete Optimization , vol.3 , Issue.4 , pp. 288-298
    • Bendall, G.1    Margot, F.2
  • 9
    • 67650925074 scopus 로고    scopus 로고
    • Assessing the relevance of node features for network structure
    • G. Bianconi, P. Pin, and M. Marsili Assessing the relevance of node features for network structure Proc. Natl. Acad. Sci. 106 2009 11433
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 11433
    • Bianconi, G.1    Pin, P.2    Marsili, M.3
  • 10
    • 0038589165 scopus 로고    scopus 로고
    • The anatomy of a large-scale hypertextual web search engine
    • S. Brin, and L. Page The anatomy of a large-scale hypertextual web search engine Comput. Netw. 30 1-7 1998 107 117
    • (1998) Comput. Netw. , vol.30 , Issue.17 , pp. 107-117
    • Brin, S.1    Page, L.2
  • 11
    • 33751255087 scopus 로고    scopus 로고
    • Evaluation of clustering algorithms for protein-protein interaction network
    • S. Brohée, and J. Van Helden Evaluation of clustering algorithms for protein-protein interaction network BMC Bioinform. 7 2006 488
    • (2006) BMC Bioinform. , vol.7 , pp. 488
    • Brohée, S.1    Van Helden, J.2
  • 12
    • 84976668743 scopus 로고
    • Algorithm 457: Finding all cliques of an undirected graph
    • C. Bron, and J. Kerbosch Algorithm 457: finding all cliques of an undirected graph Commun. ACM 16 1973 575 577
    • (1973) Commun. ACM , vol.16 , pp. 575-577
    • Bron, C.1    Kerbosch, J.2
  • 14
    • 33745619564 scopus 로고    scopus 로고
    • Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
    • DOI 10.1093/bioinformatics/btl145
    • H.N. Chua, W.K. Sung, and L. Wong Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions Bioinformatics 22 13 2006 1623 1630 (Pubitemid 43985296)
    • (2006) Bioinformatics , vol.22 , Issue.13 , pp. 1623-1630
    • Chua, H.N.1    Sung, W.-K.2    Wong, L.3
  • 16
    • 77958053467 scopus 로고    scopus 로고
    • Accelerating spectral clustering with partial supervision
    • M. Dimitrios Accelerating spectral clustering with partial supervision Data Min. Knowl. Disc. 21 2010 241 258
    • (2010) Data Min. Knowl. Disc. , vol.21 , pp. 241-258
    • Dimitrios, M.1
  • 18
    • 0036529479 scopus 로고    scopus 로고
    • An efficient algorithm for large-scale detection of protein families
    • A.J. Enright, S.V. Dongen, and C.A. Ouzounis An efficient algorithm for large-scale detection of protein families Nucl. Acids Res. 30 7 2002 1575 1584 (Pubitemid 34679732)
    • (2002) Nucleic Acids Research , vol.30 , Issue.7 , pp. 1575-1584
    • Enright, A.J.1    Van Dongen, S.2    Ouzounis, C.A.3
  • 19
    • 40949124684 scopus 로고    scopus 로고
    • Communicability in complex networks
    • E. Estrada, and N. Hatano Communicability in complex networks Phys. Rev. E 77 2008 036111
    • (2008) Phys. Rev. e , vol.77 , pp. 036111
    • Estrada, E.1    Hatano, N.2
  • 20
    • 67649185257 scopus 로고    scopus 로고
    • Communicability graph and community structures in complex networks
    • E. Estrada, and N. Hatano Communicability graph and community structures in complex networks Appl. Math. Comput. 214 2009 500 511
    • (2009) Appl. Math. Comput. , vol.214 , pp. 500-511
    • Estrada, E.1    Hatano, N.2
  • 21
    • 69249226348 scopus 로고    scopus 로고
    • A max-flow based approach to the identification of protein complexes using protein interaction and microarray data
    • J. Feng, R. Jiang, T. Jiang, A max-flow based approach to the identification of protein complexes using protein interaction and microarray data, in: Computational Systems Bioinformatics Conference, 2008, pp. 51-62.
    • (2008) Computational Systems Bioinformatics Conference , pp. 51-62
    • Feng, J.1    Jiang, R.2    Jiang, T.3
  • 22
    • 68549122904 scopus 로고    scopus 로고
    • Identifying the topology of protein complexes from affinity purification assays
    • C.C. Friedel, and C. Zimmer Identifying the topology of protein complexes from affinity purification assays Bioinformatics 25 16 2009 2140 2146
    • (2009) Bioinformatics , vol.25 , Issue.16 , pp. 2140-2146
    • Friedel, C.C.1    Zimmer, C.2
  • 24
    • 67349269941 scopus 로고    scopus 로고
    • Maximum entropy membership functions for discrete fuzzy variables
    • X. Gao, and C. You Maximum entropy membership functions for discrete fuzzy variables Inform. Sci. 179 2009 2353 2361
    • (2009) Inform. Sci. , vol.179 , pp. 2353-2361
    • Gao, X.1    You, C.2
  • 26
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • A.C. Gavin Functional organization of the yeast proteome by systematic analysis of protein complexes Nature 415 6868 2002 141 147
    • (2002) Nature , vol.415 , Issue.6868 , pp. 141-147
    • Gavin, A.C.1
  • 27
    • 78650533289 scopus 로고    scopus 로고
    • Identification of protein complexes from co-immunoprecipitation data
    • G. Geva, and R. Sharan Identification of protein complexes from co-immunoprecipitation data Bioinformatics 27 1 2010 111 117
    • (2010) Bioinformatics , vol.27 , Issue.1 , pp. 111-117
    • Geva, G.1    Sharan, R.2
  • 29
    • 0032504104 scopus 로고    scopus 로고
    • A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation
    • DOI 10.1016/S0092-8674(00)81220-9
    • P.A. Grant, D. Schieltz, M.G. Pray-Grant, D.J. Steger, J.C. Reese, J.R. Yates, and J.L. Workman A subset of TAF(II)s are integral components of the saga complex required for nucleosome acetylation and transcriptional stimulation Cell 94 1998 45 53 (Pubitemid 28347468)
    • (1998) Cell , vol.94 , Issue.1 , pp. 45-53
    • Grant, P.A.1    Schieltz, D.2    Pray-Grant, M.G.3    Steger, D.J.4    Reese, J.C.5    Yates III, J.R.6    Workman, J.L.7
  • 30
    • 77956584005 scopus 로고    scopus 로고
    • Protein complex prediction based on k-connected subgraphs in protein interaction network
    • M. Habibi, C. Eslahchi, and L. Wong Protein complex prediction based on k-connected subgraphs in protein interaction network Bioinformatics 4 2010 129
    • (2010) Bioinformatics , vol.4 , pp. 129
    • Habibi, M.1    Eslahchi, C.2    Wong, L.3
  • 33
    • 77949503577 scopus 로고    scopus 로고
    • Protein complex prediction based on simultaneous protein interaction network
    • S.H. Jung, B. Hyun, W.H. Jang, H.Y. Hur, and D.s. Han Protein complex prediction based on simultaneous protein interaction network Bioinformatics 26 3 2010 385 391
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 385-391
    • Jung, S.H.1    Hyun, B.2    Jang, W.H.3    Hur, H.Y.4    D, S.H.5
  • 34
    • 67649568100 scopus 로고    scopus 로고
    • Protein complex prediction based on mutually exclusive interactions in protein interaction network
    • S.H. Jung, W.H. Jang, H.Y. Hur, B. Hyun, and D.S. Han Protein complex prediction based on mutually exclusive interactions in protein interaction network Genome Inform. 21 2008 77 88
    • (2008) Genome Inform. , vol.21 , pp. 77-88
    • Jung, S.H.1    Jang, W.H.2    Hur, H.Y.3    Hyun, B.4    Han, D.S.5
  • 35
    • 22844450110 scopus 로고    scopus 로고
    • Systematic interpretation of genetic interactions using protein networks
    • DOI 10.1038/nbt1096
    • R. Kelley, and T. Ideker Systematic interpretation of genetic interactions using protein networks Nat. Biotechnol. 23 5 2005 561 566 (Pubitemid 41724894)
    • (2005) Nature Biotechnology , vol.23 , Issue.5 , pp. 561-566
    • Kelley, R.1    Ideker, T.2
  • 36
    • 10244264813 scopus 로고    scopus 로고
    • Protein complex prediction via cost-based clustering
    • DOI 10.1093/bioinformatics/bth351
    • A.D. King, N. Prulj, and I. Jurisica Protein complex prediction via cost-based clustering Bioinformatics 20 17 2004 3013 3020 (Pubitemid 39619193)
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3013-3020
    • King, A.D.1    Przulj, N.2    Jurisica, I.3
  • 37
    • 0034909407 scopus 로고    scopus 로고
    • Enumerating all connected maximal common subgraphs in two graphs
    • DOI 10.1016/S0304-3975(00)00286-3, PII S0304397500002863
    • I. Koch Enumerating all connected maixmal common subgraph in two graphs Theor. Comput. Sci. 250 2001 1 30 (Pubitemid 32674078)
    • (2001) Theoretical Computer Science , vol.250 , Issue.1-2 , pp. 1-30
    • Koch, I.1
  • 39
    • 59649099220 scopus 로고    scopus 로고
    • Predicting protein complexes from PPI data: A core-attachment approach
    • H.C. Leung, Q. Xiang, S.M. Yiu, and F.Y. Chin Predicting protein complexes from PPI data: a core-attachment approach J. Comput. Biol. 16 2 2009 133 144
    • (2009) J. Comput. Biol. , vol.16 , Issue.2 , pp. 133-144
    • Leung, H.C.1    Xiang, Q.2    Yiu, S.M.3    Chin, F.Y.4
  • 40
    • 38449114820 scopus 로고    scopus 로고
    • Discovering protein complexes in dense reliable neighborhoods of protein interaction networks
    • X.L. Li, C.S. Foo, S.K. Ng, Discovering protein complexes in dense reliable neighborhoods of protein interaction networks, in: Computational Systems Bioinformatics Conference, 2007, pp. 157-168.
    • (2007) Computational Systems Bioinformatics Conference , pp. 157-168
    • Li, X.L.1    Foo, C.S.2    Ng, S.K.3
  • 41
    • 33748579201 scopus 로고    scopus 로고
    • Interaction graph mining for protein complexes using local clique merging
    • X.L. Li, S.H. Tan, C.S. Foo, and S.K. Ng Interaction graph mining for protein complexes using local clique merging Genome Inform. 16 2 2005 260 269
    • (2005) Genome Inform. , vol.16 , Issue.2 , pp. 260-269
    • Li, X.L.1    Tan, S.H.2    Foo, C.S.3    Ng, S.K.4
  • 42
    • 76749150479 scopus 로고    scopus 로고
    • Computational approaches for detecting protein complexes from protein interaction networks: A survey
    • X.L. Li, M. Wu, C.K. Kwoh, and S.K. Ng Computational approaches for detecting protein complexes from protein interaction networks: a survey BMC Genom. 11 Suppl. 1 2010 S3
    • (2010) BMC Genom. , vol.11 , Issue.SUPPL. 1 , pp. 3
    • Li, X.L.1    Wu, M.2    Kwoh, C.K.3    Ng, S.K.4
  • 43
    • 41149147660 scopus 로고    scopus 로고
    • Growing functional modules from a seed protein via integration of protein interaction and gene expression data
    • I.A. Maraziotis, K. Dimitrakopoulou, and A. Bezerianos Growing functional modules from a seed protein via integration of protein interaction and gene expression data BMC Bioinform. 8 2007 408
    • (2007) BMC Bioinform. , vol.8 , pp. 408
    • Maraziotis, I.A.1    Dimitrakopoulou, K.2    Bezerianos, A.3
  • 46
    • 20444504323 scopus 로고    scopus 로고
    • Uncovering the overlapping community structure of complex networks in nature and society
    • G. Palla, I. Derényi, and I. Farkas Uncovering the overlapping community structure of complex networks in nature and society Nature 435 2005 814
    • (2005) Nature , vol.435 , pp. 814
    • Palla, G.1    Derényi, I.2    Farkas, I.3
  • 47
    • 20444504323 scopus 로고    scopus 로고
    • Uncovering the overlapping community structure of complex networks in nature and society
    • DOI 10.1038/nature03607
    • G. Palla, I. Derenyi, and T. Vicsek Uncovering the overlapping community structure of complex networks in nature and society Nature 435 7043 2005 814 818 (Pubitemid 40839731)
    • (2005) Nature , vol.435 , Issue.7043 , pp. 814-818
    • Palla, G.1    Derenyi, I.2    Farkas, I.3    Vicsek, T.4
  • 48
    • 0038579896 scopus 로고    scopus 로고
    • The maximum clique problem
    • P.M. Pardalos, and J. Xue The maximum clique problem J. Global Opt. 4 1997 301 328
    • (1997) J. Global Opt. , vol.4 , pp. 301-328
    • Pardalos, P.M.1    Xue, J.2
  • 50
    • 55249094768 scopus 로고    scopus 로고
    • Maximal fuzzy maps
    • J. Recasens maximal fuzzy maps Inform. Sci. 179 2009 130 139
    • (2009) Inform. Sci. , vol.179 , pp. 130-139
    • Recasens, J.1
  • 51
    • 0032828715 scopus 로고    scopus 로고
    • A generic protein purification method for protein complex characterization and proteome exploration
    • DOI 10.1038/13732
    • G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, and M. Mann A generic protein purification method for protein complex characterization and proteome exploration Nat. Biotechnol. 17 10 1999 1030 1032 (Pubitemid 29474865)
    • (1999) Nature Biotechnology , vol.17 , Issue.10 , pp. 1030-1032
    • Rigaut, G.1    Shevchenko, A.2    Rutz, B.3    Wilm, M.4    Mann, M.5    Seraphin, B.6
  • 52
    • 77958153861 scopus 로고    scopus 로고
    • Incorporating multiple genomic features with the utilization of interacting domain patterns to improve the prediction of protein-protein interaction
    • R. Roslan, R.M. Othman, Z.A. Shah, and S. Kasim Incorporating multiple genomic features with the utilization of interacting domain patterns to improve the prediction of protein-protein interaction Inform. Sci. 180 2010 3955 3973
    • (2010) Inform. Sci. , vol.180 , pp. 3955-3973
    • Roslan, R.1    Othman, R.M.2    Shah, Z.A.3    Kasim, S.4
  • 54
    • 0036493195 scopus 로고    scopus 로고
    • Interaction generality, a measurement to assess the reliability of a protein-protein interaction
    • R. Saito, H. Suzuki, and Y. Hayashizaki Interaction generality, a measurement to assess the reliability of a protein-protein interaction Nucl. Acids Res. 30 5 2002 1163 1168 (Pubitemid 34679688)
    • (2002) Nucleic Acids Research , vol.30 , Issue.5 , pp. 1163-1168
    • Saito, R.1    Suzuki, H.2    Hayashizaki, Y.3
  • 55
    • 76749144269 scopus 로고    scopus 로고
    • Molecular biology of protein-protein interactions for computer scientists
    • X.L. Li, (Ed.)
    • C. Schonbach, Molecular biology of protein-protein interactions for computer scientists, in: X.L. Li, (Ed.), Biological Data Mining in Protein Interaction Networks, 2009, pp. 1-13.
    • (2009) Biological Data Mining in Protein Interaction Networks , pp. 1-13
    • Schonbach, C.1
  • 56
    • 21344469354 scopus 로고    scopus 로고
    • Diversification strategies in tabu search algorithms for the maximum clique problem
    • P. Soriano, and M. Gendreau Diversification strategies in tabu search algorithms for the maximum clique problem Ann. Oper. Res. 63 1996 189 207 (Pubitemid 126729240)
    • (1996) Annals of Operations Research , vol.63 , pp. 189-207
    • Soriano, P.1    Gendreau, M.2
  • 59
    • 33749264452 scopus 로고    scopus 로고
    • The worst-case time complexity for generating all maximal cliques and computational experiments
    • DOI 10.1016/j.tcs.2006.06.015, PII S0304397506003586, Computing and Combinatorics
    • E. Tomita, A. Tanaka, and H. Takahashi The worst-case time complexity for generating all maximal cliques and computational experiments Theor. Comput. Sci. 363 2006 28 42 (Pubitemid 44486521)
    • (2006) Theoretical Computer Science , vol.363 , Issue.1 , pp. 28-42
    • Tomita, E.1    Tanaka, A.2    Takahashi, H.3
  • 62
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • C. von Mering, R. Krause, B. Snel, M. Cornell, S. Oliver, and P. Bork Comparative assessment of large-scale data sets of protein-protein interactions Nature 417 6887 2002 399 403 (Pubitemid 34563526)
    • (2002) Nature , vol.417 , Issue.6887 , pp. 399-403
    • Von Mering, C.1    Krause, R.2    Snel, B.3    Cornell, M.4    Oliver, S.G.5    Fields, S.6    Bork, P.7
  • 63
    • 67649518162 scopus 로고    scopus 로고
    • A core-attachment based method to detect protein complexes in PPI networks
    • M. Wu, X. Li, C.K. Kwoh, and S. Ng A core-attachment based method to detect protein complexes in PPI networks BMC Bioinform. 10 2009 169
    • (2009) BMC Bioinform. , vol.10 , pp. 169
    • Wu, M.1    Li, X.2    Kwoh, C.K.3    Ng, S.4
  • 65
    • 41349108025 scopus 로고    scopus 로고
    • From pull-down data to protein interaction networks and complexes with biological relevance
    • DOI 10.1093/bioinformatics/btn036
    • B. Zhang, B. Park, T.V. Karpinets, and N.F. Samatova From pull-down data to protein interaction networks and complexes with biological relevance Bioinformatics 24 7 2008 979 986 (Pubitemid 351448033)
    • (2008) Bioinformatics , vol.24 , Issue.7 , pp. 979-986
    • Zhang, B.1    Park, B.-H.2    Karpinets, T.3    Samatova, N.F.4
  • 66
    • 77958151233 scopus 로고    scopus 로고
    • Integrating induction and deduction for noisy data mining
    • Y. Zhang, and X. Wu Integrating induction and deduction for noisy data mining Inform. Sci. 180 2010 2663 2673
    • (2010) Inform. Sci. , vol.180 , pp. 2663-2673
    • Zhang, Y.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.