메뉴 건너뛰기




Volumn 55, Issue 1, 2004, Pages 31-52

Classification Using φ-Machines and Constructive Function Approximation

Author keywords

machine; Classification; Constructive induction; Decision tree; Linear machine; Non linear discrimination; Support vector machine

Indexed keywords

ALGORITHMS; DECISION THEORY; NEURAL NETWORKS; VECTORS;

EID: 2342452616     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MACH.0000019803.57720.7b     Document Type: Article
Times cited : (6)

References (36)
  • 1
    • 0003578238 scopus 로고
    • Dynamic node creation in backpropagation networks
    • Institute for Cognitive Science, University of California, San Diego, CA
    • Ash, T. (1989). Dynamic node creation in backpropagation networks (Technical Report ICS Report 8901). Institute for Cognitive Science, University of California, San Diego, CA.
    • (1989) Technical Report ICS Report , vol.8901
    • Ash, T.1
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Blake, C., & Merz, C. (1998). UCI repository of machine learning databases, [http://www.ics.uci.edu/mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 3
    • 0001858087 scopus 로고
    • Multivariate decision trees
    • Brodley, C., & Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning, 19, 45-77.
    • (1995) Machine Learning , vol.19 , pp. 45-77
    • Brodley, C.1    Utgoff, P.E.2
  • 5
    • 0042955756 scopus 로고    scopus 로고
    • Finding optimal multi-splits for numerical attributes in decision tree learning
    • NeuroCOLT
    • Elomaa, T., & Rousu, J. (1996). Finding optimal multi-splits for numerical attributes in decision tree learning (Technical Report NC-TR-96-041). NeuroCOLT.
    • (1996) Technical Report , vol.NC-TR-96-041
    • Elomaa, T.1    Rousu, J.2
  • 7
  • 10
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • Frean, M. (1990b). The upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation, 2, 198-209.
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 11
    • 0007133880 scopus 로고
    • A thermal perception learning rule
    • Frean, M. (1992). A thermal perception learning rule. Neural Computation, 4, 946-957.
    • (1992) Neural Computation , vol.4 , pp. 946-957
    • Frean, M.1
  • 15
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • ISIS, University of Southampton
    • Gunn, S. (1998). Support vector machines for classification and regression (Technical Report). ISIS, University of Southampton.
    • (1998) Technical Report
    • Gunn, S.1
  • 18
    • 36149031331 scopus 로고
    • Learning feed-forward networks: The tiling algorithm
    • Mezard, M., & Nadal, J. (1989). Learning feed-forward networks: The tiling algorithm. J. Phys. A: Math Gen., 22, 2191-2203.
    • (1989) J. Phys. A: Math Gen. , vol.22 , pp. 2191-2203
    • Mezard, M.1    Nadal, J.2
  • 20
    • 0001958391 scopus 로고
    • Study of a growth algorithm for a feed-forward neural network
    • Nadal, J. (1989). Study of a growth algorithm for a feed-forward neural network. International Journal of Neural Systems, 1, 55-59.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 55-59
    • Nadal, J.1
  • 23
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G. M., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.M.1    Haussler, D.2
  • 24
    • 0012405584 scopus 로고    scopus 로고
    • Constructive neural network learning algorithms for multicategory real-valued pattern classification
    • Iowa State University, Computer Science Department
    • Parekh, R., Yang, J., & Honavar, V. (1997). Constructive neural network learning algorithms for multicategory real-valued pattern classification (Technical Report 97-06). Iowa State University, Computer Science Department.
    • (1997) Technical Report , vol.97 , Issue.6
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 25
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural network learning algorithms for pattern classification
    • Parekh, R., Yang, J., & Honavar, V. (2000). Constructive neural network learning algorithms for pattern classification. IEEE Transactions on Neural Networks, 11(2), 436-451.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.2 , pp. 436-451
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 26
    • 33749970618 scopus 로고
    • Barycentric correction procedure: A fast method for learning threshold units
    • Washington, DC
    • Poulard, H. (1995). Barycentric correction procedure: A fast method for learning threshold units. In Proceedings of World Congress on Neural Networks (WCNN-95) (pp. 710-713). Washington, DC.
    • (1995) Proceedings of World Congress on Neural Networks (WCNN-95) , pp. 710-713
    • Poulard, H.1
  • 30
    • 85156269514 scopus 로고
    • Perceptron trees: A case study in hybrid concept representations
    • San Francisco, CA: Morgan Kaufmann
    • Utgoff, P. E. (1988). Perceptron trees: A case study in hybrid concept representations. In Proceedings of the Seventh National Conference on Artificial Intelligence (pp. 601-606). San Francisco, CA: Morgan Kaufmann.
    • (1988) Proceedings of the Seventh National Conference on Artificial Intelligence , pp. 601-606
    • Utgoff, P.E.1
  • 31
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997). Decision tree induction based on efficient tree restructuring. Machine Learning, 29, 5-44.
    • (1997) Machine Learning , vol.29 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3
  • 34
    • 0004062333 scopus 로고
    • Hampshire, England: MacMillan Publishers Company
    • Walpole, R. (1974). Introduction to statistics. Hampshire, England: MacMillan Publishers Company.
    • (1974) Introduction to Statistics
    • Walpole, R.1
  • 35
    • 0007778387 scopus 로고
    • Node splitting: A constructive algorithm for feed-forward neural networks
    • Boston, MA: MIT Press
    • Wynne-Jones, M. (1992). Node splitting: A constructive algorithm for feed-forward neural networks. Advances in Neural Information Processing Systems (pp. 1072-1079). Boston, MA: MIT Press.
    • (1992) Advances in Neural Information Processing Systems , pp. 1072-1079
    • Wynne-Jones, M.1
  • 36
    • 0006406095 scopus 로고    scopus 로고
    • DistAl: An inter-pattern distance-based constructive learning algorithm
    • Yang, J., Parekh, R., & Honavar, V. (1999). DistAl: An inter-pattern distance-based constructive learning algorithm. Intelligent Data Analysis, 3, 55-73.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 55-73
    • Yang, J.1    Parekh, R.2    Honavar, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.