메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1811-1818

Constructive Induction and Algorithms for Learning Concepts with Complex interaction

Author keywords

Attribute interaction; Constructive induction; Feature construction; Feature selection; Genetic algorithms; Shared attributes

Indexed keywords

COMPUTATION THEORY; GENETIC ALGORITHMS; SEARCH ENGINES;

EID: 32444442471     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1068009.1068317     Document Type: Conference Paper
Times cited : (14)

References (31)
  • 1
    • 85152629807 scopus 로고
    • Incremental constructive induction: An instance-based approach
    • Evanston, Illinois, Morgan Kaufmann
    • D. W. Aha. Incremental constructive induction: An instance-based approach. In Proc. of the Eighth International Workshop on Machine Learning, pages 117-121, Evanston, Illinois, 1991. Morgan Kaufmann.
    • (1991) Proc. of the Eighth International Workshop on Machine Learning , pp. 117-121
    • Aha, D.W.1
  • 4
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • K. A. De Jong, W. M. Spears, and D. F. Gordon. Using genetic algorithms for concept learning. Machine Learning, 13:161-188, 1993.
    • (1993) Machine Learning , vol.13 , pp. 161-188
    • De Jong, K.A.1    Spears, W.M.2    Gordon, D.F.3
  • 5
    • 0004761280 scopus 로고
    • Inductive learning of structural descriptions: Evaluation criteria and comparative review of selected methods
    • July
    • T. G. Dietterich and R. S. Michalski. Inductive learning of structural descriptions: Evaluation criteria and comparative review of selected methods. Artificial Intelligence, 16(3):257-294, July 1981.
    • (1981) Artificial Intelligence , vol.16 , Issue.3 , pp. 257-294
    • Dietterich, T.G.1    Michalski, R.S.2
  • 6
    • 0035500276 scopus 로고    scopus 로고
    • Understanding the crucial role of attribute interaction in data mining
    • November
    • A. A. Freitas. Understanding the crucial role of attribute interaction in data mining. Artificial Intelligence Review, 16(3):177-199, November 2001.
    • (2001) Artificial Intelligence Review , vol.16 , Issue.3 , pp. 177-199
    • Freitas, A.A.1
  • 10
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R. C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63-91, 1993.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 11
    • 0003023369 scopus 로고    scopus 로고
    • A genetic programming approach to constructive induction
    • J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors University of Wisconsin, Madison, Wisconsin, USA, July Morgan Kauffman
    • Y. Hu. A genetic programming approach to constructive induction. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Proc. of the Third Annual Genetic Programming Conference, pages 146-151, University of Wisconsin, Madison, Wisconsin, USA, July 1998. Morgan Kauffman.
    • (1998) Proc. of the Third Annual Genetic Programming Conference , pp. 146-151
    • Hu, Y.1
  • 15
    • 0004052111 scopus 로고    scopus 로고
    • Users guide to the PGAPack parallel genetic algorithm library
    • Argonne National Laboratory
    • D. Levine. Users guide to the PGAPack parallel genetic algorithm library. Technical Report 18, Argonne National Laboratory, 1996.
    • (1996) Technical Report , vol.18
    • Levine, D.1
  • 17
    • 35248828499 scopus 로고    scopus 로고
    • Genetic programming for attribute construction in data mining
    • C. Ryan, T. Soule, M. Keijzer, E. P. K. Tsang, R. Poli, and E. Costa, editors, Proc. of the Sixth European Conference in Genetic Programming, Springer-Verlag, April
    • F. E. B. Otero, M. M. S. Silva, A. A. Freitas, and J. C. Nievola. Genetic programming for attribute construction in data mining. In C. Ryan, T. Soule, M. Keijzer, E. P. K. Tsang, R. Poli, and E. Costa, editors, Proc. of the Sixth European Conference in Genetic Programming, volume 2610 of Lecture Notes in Computer Science, pages 384-393. Springer-Verlag, April 2003.
    • (2003) Lecture Notes in Computer Science , vol.2610 , pp. 384-393
    • Otero, F.E.B.1    Silva, M.M.S.2    Freitas, A.A.3    Nievola, J.C.4
  • 19
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine Learning, 5(1):71-99, 1990.
    • (1990) Machine Learning , vol.5 , Issue.1 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 22
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • August
    • N. Qian and T. J. Sejnowski. Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, 202(4):865-884, August 1988.
    • (1988) Journal of Molecular Biology , vol.202 , Issue.4 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 24
    • 0002591462 scopus 로고
    • Lookahead feature construction for learning hard concepts
    • University of Massachusetts, Amherst, MA, USA, June Morgan Kaufmann
    • H. Ragavan and L. A. Rendell. Lookahead feature construction for learning hard concepts. In Proc. of the Tenth International Conference on Machine Learning, pages 252-259, University of Massachusetts, Amherst, MA, USA, June 1993. Morgan Kaufmann.
    • (1993) Proc. of the Tenth International Conference on Machine Learning , pp. 252-259
    • Ragavan, H.1    Rendell, L.A.2
  • 25
  • 26
    • 35248833168 scopus 로고    scopus 로고
    • Genetic approach to constructive induction based on non-algebraic feature representation
    • M. R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, and C. Borgelt, editors, Lecture Notes in Computer Science, Springer-Verlag, August
    • L. S. Shafti and E. Pérez. Genetic approach to constructive induction based on non-algebraic feature representation. In M. R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, and C. Borgelt, editors, Proc. of the Fifth International Symposium on Intelligent Data Analysis, Lecture Notes in Computer Science, pages 599-610. Springer-Verlag, August 2003.
    • (2003) Proc. of the Fifth International Symposium on Intelligent Data Analysis , pp. 599-610
    • Shafti, L.S.1    Pérez, E.2
  • 27
    • 22944449329 scopus 로고    scopus 로고
    • Machine learning by multi-feature extraction using genetic algorithms
    • C. Lemaître, C. A. Reyes, and J. A. Gonzalez, editors, Lecture Notes in Computer Science, Springer-Verlag, November
    • L. S. Shafti and E. Pérez. Machine learning by multi-feature extraction using genetic algorithms. In C. Lemaître, C. A. Reyes, and J. A. Gonzalez, editors, Proc. of the Ninth Ibero-American Conference on Artificial Intelligence - Advances in Artificial Intelligence, Lecture Notes in Computer Science, pages 246-255. Springer-Verlag, November 2004.
    • (2004) Proc. of the Ninth Ibero-American Conference on Artificial Intelligence - Advances in Artificial Intelligence , pp. 246-255
    • Shafti, L.S.1    Pérez, E.2
  • 28
    • 35248885574 scopus 로고    scopus 로고
    • Feature construction and selection using genetic programming and a genetic algorithm
    • C. Ryan, T. Soule, M. Keijzer, E. P. K. Tsang, R. Poli, and E. Costa, editors, Proc. of the sixth European Conference in Genetic Programming, Essex, UK, April Springer-Verlag
    • M. G. Smith and L. Bull. Feature construction and selection using genetic programming and a genetic algorithm. In C. Ryan, T. Soule, M. Keijzer, E. P. K. Tsang, R. Poli, and E. Costa, editors, Proc. of the sixth European Conference in Genetic Programming, volume 2610 of Lecture Notes in Computer Science, pages 229-237, Essex, UK, April 2003. Springer-Verlag.
    • (2003) Lecture Notes in Computer Science , vol.2610 , pp. 229-237
    • Smith, M.G.1    Bull, L.2
  • 29
    • 0032028849 scopus 로고    scopus 로고
    • Feature space transformation using genetic algorithms
    • March-April
    • H. Vafaie and K. DeJong. Feature space transformation using genetic algorithms. IEEE Intelligent Systems, 13(2):57-65, March-April 1998.
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.2 , pp. 57-65
    • Vafaie, H.1    Dejong, K.2
  • 31
    • 0033699346 scopus 로고    scopus 로고
    • Constructing X-of-N attributes for decision tree learning
    • Z. Zheng. Constructing X-of-N attributes for decision tree learning. Machine Learning, 40(1):35-75, 2000.
    • (2000) Machine Learning , vol.40 , Issue.1 , pp. 35-75
    • Zheng, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.