메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 2349-2376

Learning to select features using their properties

Author keywords

Feature selection; Meta features; Unobserved features

Indexed keywords

FORECASTING;

EID: 56349093380     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (21)

References (34)
  • 1
    • 56349172518 scopus 로고    scopus 로고
    • The size of the weights is more important than the size of the network
    • P.L. Bartlett. The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 1998.
    • (1998) IEEE Transactions on Information Theory
    • Bartlett, P.L.1
  • 5
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences, 2006.
    • (2006) Proceedings of the National Academy of Sciences
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 6
    • 0000293183 scopus 로고
    • Theory of communication
    • D. Gabor. Theory of communication. J. IEE, 93:429-459, 1946.
    • (1946) J. IEE , vol.93 , pp. 429-459
    • Gabor, D.1
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46, 2002.
    • (2002) Machine Learning , vol.46
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • R. Kohavi and G.H. John. Wrapper for feature subset selection. Artificial Intelligence, 97(1-2): 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 17
    • 36849072775 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector machines for classification: A review
    • F. Lauer and G. Bloch. Incorporating prior knowledge in support vector machines for classification: a review. Submitted to Neurocomputing, 2006.
    • (2006) Submitted to Neurocomputing
    • Lauer, F.1    Bloch, G.2
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 23
    • 0037653041 scopus 로고
    • Induction of decision trees
    • Jude W. Shavlik and Thomas G. Dietterich, editors, Morgan Kaufmann
    • J. R. Quinlan. Induction of decision trees. In Jude W. Shavlik and Thomas G. Dietterich, editors, Readings in Machine Learning. Morgan Kaufmann, 1990.
    • (1990) Readings in Machine Learning
    • Quinlan, J.R.1
  • 31
    • 0036307392 scopus 로고    scopus 로고
    • Visual features of intermediate complexity and their use in classification
    • S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 2002.
    • (2002) Nature Neuroscience
    • Ullman, S.1    Vidal-Naquet, M.2    Sali, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.