메뉴 건너뛰기




Volumn 22, Issue 2, 2009, Pages 308-316

Use of particle swarm optimization for machinery fault detection

Author keywords

Computational intelligence; Feature selection; Machinery condition monitoring; Signal processing; Swarm intelligence

Indexed keywords

ARTIFICIAL INTELLIGENCE; BEARINGS (MACHINE PARTS); BEARINGS (STRUCTURAL); CELLULAR AUTOMATA; CLASSIFIERS; CONDITION MONITORING; ELECTRIC FAULT LOCATION; FAULT DETECTION; FEATURE EXTRACTION; GENETIC ALGORITHMS; INTELLIGENT CONTROL; LEARNING SYSTEMS; MACHINERY; NEURAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS; ROTATING MACHINERY; ROTATION; SIGNAL PROCESSING; SUPPORT VECTOR MACHINES;

EID: 58949102919     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2008.07.006     Document Type: Article
Times cited : (143)

References (28)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 955-974
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 955-974
    • Burges, C.J.C.1
  • 2
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc M., and Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 (2002) 58-73
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 3
    • 0033666935 scopus 로고    scopus 로고
    • Eberhart, R., Shi, Y., 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC). IEEE, San Diego, CA, Piscataway, pp. 84-88.
    • Eberhart, R., Shi, Y., 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC). IEEE, San Diego, CA, Piscataway, pp. 84-88.
  • 4
    • 58949084985 scopus 로고    scopus 로고
    • Gunn, S.R., 1998. Support vector machines for classification and regression. Technical Report, Department of Electrical and Computer Science, University of Southampton.
    • Gunn, S.R., 1998. Support vector machines for classification and regression. Technical Report, Department of Electrical and Computer Science, University of Southampton.
  • 5
    • 58949086134 scopus 로고    scopus 로고
    • Guyon, I., Christianini, N., 1999. Survey of support vector machine applications. In: Proceedings of NIPS'99 Special Workshop on Learning with Support Vector 〈http://www.clopinet.com/isabelle/Projects/SVM/applist.html〉.
    • Guyon, I., Christianini, N., 1999. Survey of support vector machine applications. In: Proceedings of NIPS'99 Special Workshop on Learning with Support Vector 〈http://www.clopinet.com/isabelle/Projects/SVM/applist.html〉.
  • 7
    • 0033689605 scopus 로고    scopus 로고
    • Genetic algorithms for feature extraction in machine condition monitoring with vibration signals
    • Jack L.B., and Nandi A.K. Genetic algorithms for feature extraction in machine condition monitoring with vibration signals. IEE Proceedings-Vision Image and Signal Processing 147 (2000) 205-212
    • (2000) IEE Proceedings-Vision Image and Signal Processing , vol.147 , pp. 205-212
    • Jack, L.B.1    Nandi, A.K.2
  • 9
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • Jack L.B., and Nandi A.K. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems and Signal Processing 16 (2002) 373-390
    • (2002) Mechanical Systems and Signal Processing , vol.16 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 10
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Scholkopf B., Burges C.J., and Simola A. (Eds), MIT Press, Cambridge, MA, USA
    • Joachims T. Making large-scale SVM learning practical. In: Scholkopf B., Burges C.J., and Simola A. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA, USA 169-184
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 14
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • Lin S.-W., Ying K.-C., Chen S.-C., and Lee Z.-J. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications 35 (2008) 1817-1824
    • (2008) Expert Systems with Applications , vol.35 , pp. 1817-1824
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 16
    • 44349195551 scopus 로고    scopus 로고
    • Poli, R., 2008. Analysis of the publications on the applications of particle swarm optimization. Journal of Artificial Evolution and Applications, doi: 10.1155/2008/685175, 10p.
    • Poli, R., 2008. Analysis of the publications on the applications of particle swarm optimization. Journal of Artificial Evolution and Applications, doi: 10.1155/2008/685175, 10p.
  • 18
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing 18 (2004) 625-644
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 625-644
    • Samanta, B.1
  • 19
    • 2942560415 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms for gear fault detection
    • Samanta B. Artificial neural networks and genetic algorithms for gear fault detection. Mechanical Systems and Signal Processing 18 (2004) 1273-1282
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 1273-1282
    • Samanta, B.1
  • 20
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time domain features
    • Samanta B., and Al-Balushi K.R. Artificial neural network based fault diagnostics of rolling element bearings using time domain features. Mechanical Systems and Signal Processing 17 (2003) 317-328
    • (2003) Mechanical Systems and Signal Processing , vol.17 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 21
  • 22
    • 29444460051 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithm for bearing fault detection
    • Samanta B., Al-Balushi K.R., and Al-Araimi S.A. Artificial neural networks and genetic algorithm for bearing fault detection. Journal of Soft Computing 10 (2006) 264-271
    • (2006) Journal of Soft Computing , vol.10 , pp. 264-271
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 23
    • 11644275559 scopus 로고    scopus 로고
    • SVMs-a practical consequence of learning theory
    • Scholkopf B. SVMs-a practical consequence of learning theory. IEEE Intelligent Systems 13 (1998) 18-19
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 18-19
    • Scholkopf, B.1
  • 24
    • 0031700696 scopus 로고    scopus 로고
    • Shi, Y., Eberhart, R.C., 1998. A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, Piscataway, NJ, pp. 69-73.
    • Shi, Y., Eberhart, R.C., 1998. A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, Piscataway, NJ, pp. 69-73.
  • 25
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: convergence analysis and parameter selection
    • Trelea I.L. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85 (2003) 317-325
    • (2003) Information Processing Letters , vol.85 , pp. 317-325
    • Trelea, I.L.1
  • 26
  • 28
    • 33846837272 scopus 로고    scopus 로고
    • Fault diagnostics based on particle swarm optimization and support vector machines
    • Yuan S.-F., and Chu F.-L. Fault diagnostics based on particle swarm optimization and support vector machines. Mechanical Systems and Signal Processing 21 (2007) 1787-1798
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 1787-1798
    • Yuan, S.-F.1    Chu, F.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.