메뉴 건너뛰기




Volumn 54, Issue 1, 2012, Pages 75-93

Local wavelet-vaguelette-based functional classification of gene expression data

Author keywords

Functional data; Functional logistic regression; Gene expression profile; Local wavelet vaguelette decomposition; Yeast cell cycle gene expression data

Indexed keywords

CLASSIFICATION (OF INFORMATION); GENE EXPRESSION; REGRESSION ANALYSIS; YEAST;

EID: 84855489378     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201000135     Document Type: Article
Times cited : (7)

References (49)
  • 1
    • 0034954376 scopus 로고    scopus 로고
    • Alignment gene expression time series with time warping algorithms
    • Aach, J. and Church, G. M. (2001). Alignment gene expression time series with time warping algorithms. Bioinformatics 17, 495-508.
    • (2001) Bioinformatics , vol.17 , pp. 495-508
    • Aach, J.1    Church, G.M.2
  • 3
    • 85037954414 scopus 로고    scopus 로고
    • Multiresolution approximation to the stochastic inverse problem
    • Angulo, J. M. and Ruiz-Medina, M. D. (1999). Multiresolution approximation to the stochastic inverse problem. Advances in Applied Probability 31, 1039-1057.
    • (1999) Advances in Applied Probability , vol.31 , pp. 1039-1057
    • Angulo, J.M.1    Ruiz-Medina, M.D.2
  • 4
    • 64849109341 scopus 로고    scopus 로고
    • Functional supervised classification with wavelets
    • Berlinet, A., Biau, G. and Rouviére, L. (2008). Functional supervised classification with wavelets. Annales de l'ISUP 52, 61-80.
    • (2008) Annales de l'ISUP , vol.52 , pp. 61-80
    • Berlinet, A.1    Biau, G.2    Rouviére, L.3
  • 5
    • 0035118384 scopus 로고    scopus 로고
    • Genome-wide expression analysis of plant cell cycle modulated genes
    • Breyne, P. and Zabeau, M. (2001). Genome-wide expression analysis of plant cell cycle modulated genes. Current Opinion in Plant Biology 4, 136-142.
    • (2001) Current Opinion in Plant Biology , vol.4 , pp. 136-142
    • Breyne, P.1    Zabeau, M.2
  • 6
    • 66349109045 scopus 로고    scopus 로고
    • Decoherence in yeast cell populations and its implications for genome-wide expression noise
    • Briones, M. R. S. and Bosco, F. (2009). Decoherence in yeast cell populations and its implications for genome-wide expression noise. Genetics and Molecular Research 8, 47-51.
    • (2009) Genetics and Molecular Research , vol.8 , pp. 47-51
    • Briones, M.R.S.1    Bosco, F.2
  • 7
    • 6444240715 scopus 로고    scopus 로고
    • Estimation in generalized linear models for functional data via penalized likelihood
    • Cardot, H. and Sarda, P. (2005). Estimation in generalized linear models for functional data via penalized likelihood. Journal of Multivariate Analysis 92, 24-41.
    • (2005) Journal of Multivariate Analysis , vol.92 , pp. 24-41
    • Cardot, H.1    Sarda, P.2
  • 17
    • 0035252777 scopus 로고    scopus 로고
    • A functional data-analytic approach to signal discrimination
    • Hall, P., Poskitt, D. and Presnell, B. (2001). A functional data-analytic approach to signal discrimination. Technometrics 43, 1-9.
    • (2001) Technometrics , vol.43 , pp. 1-9
    • Hall, P.1    Poskitt, D.2    Presnell, B.3
  • 18
    • 65649108093 scopus 로고    scopus 로고
    • Clustering of gene expression data based on shape similarity
    • DOI: 10.1155/2009/195712.
    • Hestilow, T. J. and Huang, Y. (2009). Clustering of gene expression data based on shape similarity. Journal on Bioinformatics and Systems Biology. DOI: 10.1155/2009/195712.
    • (2009) Journal on Bioinformatics and Systems Biology
    • Hestilow, T.J.1    Huang, Y.2
  • 21
    • 69049090897 scopus 로고    scopus 로고
    • Functional linear regression, that's interpretable
    • James, G. M., Wang, J. and Zhu, J. (2009). Functional linear regression, that's interpretable. Annals of Statistics 37, 2083-2108.
    • (2009) Annals of Statistics , vol.37 , pp. 2083-2108
    • James, G.M.1    Wang, J.2    Zhu, J.3
  • 23
    • 17844384267 scopus 로고    scopus 로고
    • Fractional random fields associated with stochastic fractional heat equations
    • Kelbert, M., Leonenko, N. N. and Ruiz-Medina, M. D. (2005). Fractional random fields associated with stochastic fractional heat equations. Advances in Applied Probability 37, 108-133.
    • (2005) Advances in Applied Probability , vol.37 , pp. 108-133
    • Kelbert, M.1    Leonenko, N.N.2    Ruiz-Medina, M.D.3
  • 24
    • 44649101922 scopus 로고    scopus 로고
    • Independent arrays or independent time courses for gene expression time series data analysis
    • Kim, S., Kim, J. K. and Choi, S. (2008). Independent arrays or independent time courses for gene expression time series data analysis. Neurocomputing 71, 23-77.
    • (2008) Neurocomputing , vol.71 , pp. 23-77
    • Kim, S.1    Kim, J.K.2    Choi, S.3
  • 25
    • 0034334515 scopus 로고    scopus 로고
    • Dynamic architecture of the yeast cell cycle uncovered by wavelet decomposition of expression microarray data
    • Klevecz, R. R. (2000) Dynamic architecture of the yeast cell cycle uncovered by wavelet decomposition of expression microarray data. Functional and Integrative Genomics 1, 186-192.
    • (2000) Functional and Integrative Genomics , vol.1 , pp. 186-192
    • Klevecz, R.R.1
  • 26
    • 0034671792 scopus 로고    scopus 로고
    • Global analysis of the genetic network controlling a bacterial cell cycle
    • Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. and Shapiro, L. (2000). Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144-2148.
    • (2000) Science , vol.290 , pp. 2144-2148
    • Laub, M.T.1    McAdams, H.H.2    Feldblyum, T.3    Fraser, C.M.4    Shapiro, L.5
  • 27
    • 30344444303 scopus 로고    scopus 로고
    • Classification using functional data analysis for temporal gene expression data
    • Leng, X. and Müller, H. G. (2006a). Classification using functional data analysis for temporal gene expression data. Bioinformatics 22, 68-76.
    • (2006) Bioinformatics , vol.22 , pp. 68-76
    • Leng, X.1    Müller, H.G.2
  • 28
    • 33749651702 scopus 로고    scopus 로고
    • Time ordering of gene co-expression
    • Leng, X. and Müller, H. G. (2006b). Time ordering of gene co-expression. Biostatistics 7, 569-584.
    • (2006) Biostatistics , vol.7 , pp. 569-584
    • Leng, X.1    Müller, H.G.2
  • 29
    • 0142148208 scopus 로고    scopus 로고
    • Modes and clustering for time-warped gene expression profile data
    • Liu, X. L. and Müller, H. G. (2003). Modes and clustering for time-warped gene expression profile data. Bioinformatics 19, 1937-1944.
    • (2003) Bioinformatics , vol.19 , pp. 1937-1944
    • Liu, X.L.1    Müller, H.G.2
  • 31
    • 0001080408 scopus 로고
    • Weighted local regression and kernel methods for nonparametric curve fitting
    • Müller, H. (1987). Weighted local regression and kernel methods for nonparametric curve fitting. Journal of the American Statistical Association 82, 231-238.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 231-238
    • Müller, H.1
  • 32
    • 19744371683 scopus 로고    scopus 로고
    • Functional modelling and classification of longitudinal data
    • Müller, H. G. (2005). Functional modelling and classification of longitudinal data. Scandinavian Journal of Statistics 32, 223-240.
    • (2005) Scandinavian Journal of Statistics , vol.32 , pp. 223-240
    • Müller, H.G.1
  • 33
    • 42949111568 scopus 로고    scopus 로고
    • Inferring gene expression dynamics via functional regression analysis
    • Müller, H. G., Chiou, J. M. and Leng, X. (2008). Inferring gene expression dynamics via functional regression analysis. BMC Bioinformatics, 60.
    • (2008) BMC Bioinformatics , pp. 60
    • Müller, H.G.1    Chiou, J.M.2    Leng, X.3
  • 37
    • 0035106736 scopus 로고    scopus 로고
    • Nonparametric mixed effects models for unequally sampled noisy curves
    • Rice, J. and Wu, C. (2000). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57, 253-259.
    • (2000) Biometrics , vol.57 , pp. 253-259
    • Rice, J.1    Wu, C.2
  • 43
    • 0000217080 scopus 로고    scopus 로고
    • Gene expression analysis with parametric bootstrap
    • Van Der Laan, M. J. and Bryan, J. (2001). Gene expression analysis with parametric bootstrap. Biostatistics 2, 445-461.
    • (2001) Biostatistics , vol.2 , pp. 445-461
    • Van Der Laan, M.J.1    Bryan, J.2
  • 45
    • 20544473123 scopus 로고    scopus 로고
    • A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation
    • Wang, H. Q. and Huang, D. S. (2005). A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation. Biotechnology Letters 27, 597-603.
    • (2005) Biotechnology Letters , vol.27 , pp. 597-603
    • Wang, H.Q.1    Huang, D.S.2
  • 46
    • 77949502363 scopus 로고    scopus 로고
    • Functional embedding for the classification of gene expression profiles
    • Wu, P. S. and Müller, H. G. (2010). Functional embedding for the classification of gene expression profiles. Bioinformatics 26, 509-517.
    • (2010) Bioinformatics , vol.26 , pp. 509-517
    • Wu, P.S.1    Müller, H.G.2
  • 48
    • 0041332955 scopus 로고    scopus 로고
    • Shrinkage estimation for functional principal component scores, with application to the population kinetics of plasma folate
    • Yao, F., Müler, H. G., Clifford, A. J., Dueker, S. R., Follett, J., Lin, Y., Buchholz, B. A. and Vogel, J. S. (2003). Shrinkage estimation for functional principal component scores, with application to the population kinetics of plasma folate. Biometrics 59, 676-685.
    • (2003) Biometrics , vol.59 , pp. 676-685
    • Yao, F.1    Müler, H.G.2    Clifford, A.J.3    Dueker, S.R.4    Follett, J.5    Lin, Y.6    Buchholz, B.A.7    Vogel, J.S.8
  • 49
    • 8644276476 scopus 로고    scopus 로고
    • The functional data analysis view of longitudinal data
    • Zhao, X., Marron, J. S. and Wells, M. T. (2004). The functional data analysis view of longitudinal data. Statistica Sinica 14, 789-808.
    • (2004) Statistica Sinica , vol.14 , pp. 789-808
    • Zhao, X.1    Marron, J.S.2    Wells, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.