메뉴 건너뛰기




Volumn 80, Issue , 2012, Pages 93-101

Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition

Author keywords

Covariate shift; Human activity recognition; Importance sampling; Probabilistic classifier; Semi supervised learning

Indexed keywords

COVARIATES; HUMAN ACTIVITY RECOGNITION; IMPORTANCE SAMPLING; PROBABILISTIC CLASSIFIERS; SEMI-SUPERVISED LEARNING;

EID: 84855251060     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.09.016     Document Type: Article
Times cited : (79)

References (37)
  • 5
    • 84855233722 scopus 로고    scopus 로고
    • (Eds.), Semi-Supervised Learning, MIT Press, Cambridge
    • O. Chapelle, B. Schölkopf, A. Zien, (Eds.), Semi-Supervised Learning, MIT Press, Cambridge, 2006.
    • (2006)
    • Chapelle, O.1    Schölkopf, B.2    Zien, A.3
  • 13
    • 68949141755 scopus 로고    scopus 로고
    • A least-squares approach to direct importance estimation
    • JULY
    • Kanamori T., Hido S., Sugiyama M. A least-squares approach to direct importance estimation. J. Mach. Learn. Res. 2009, 10(July):1391-1445.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1391-1445
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 14
    • 84855226921 scopus 로고    scopus 로고
    • Statistical analysis of kernel-based least-squares density-ratio estimation, Mach. Learn., to appear.
    • T. Kanamori, T. Suzuki, M. Sugiyama, Statistical analysis of kernel-based least-squares density-ratio estimation, Mach. Learn., to appear.
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 15
    • 84855233723 scopus 로고    scopus 로고
    • Computational complexity of kernel-based density-ratio estimation: a condition number analysis, Mach. Learn., submitted for publication.
    • T. Kanamori, T. Suzuki, M. Sugiyama, Computational complexity of kernel-based density-ratio estimation: a condition number analysis, Mach. Learn., submitted for publication.
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 18
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan S.J., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1345-1359.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 19
    • 0042600863 scopus 로고    scopus 로고
    • Inferences for case-control and semiparametric two-sample density ratio models
    • Qin J. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika 1998, 85(3):619-639.
    • (1998) Biometrika , vol.85 , Issue.3 , pp. 619-639
    • Qin, J.1
  • 21
    • 84855219676 scopus 로고    scopus 로고
    • 〈〉.
    • M. Schmidt. minfunc, 2005. 〈〉. http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.
    • (2005) M. Schmidt. minfunc
  • 22
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Inference 2000, 90(2):227-244.
    • (2000) J. Stat. Plan. Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 23
    • 0012951472 scopus 로고
    • Density ratios, empirical likelihood and cot death
    • Silverman B.W. Density ratios, empirical likelihood and cot death. J. R. Stat. Soc. Ser. C 1978, 27(1):26-33.
    • (1978) J. R. Stat. Soc. Ser. C , vol.27 , Issue.1 , pp. 26-33
    • Silverman, B.W.1
  • 25
    • 77957851853 scopus 로고    scopus 로고
    • Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting
    • AUGUST
    • Sugiyama M. Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting. IEICE Trans. Inf. Syst. 2010, E93-D(August):2690-2701.
    • (2010) IEICE Trans. Inf. Syst. , vol.E93 D , pp. 2690-2701
    • Sugiyama, M.1
  • 26
    • 84855219672 scopus 로고    scopus 로고
    • Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation, MIT Press, Cambridge, MA, USA, to appear.
    • M. Sugiyama, M. Kawanabe, Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation, MIT Press, Cambridge, MA, USA, to appear.
    • Sugiyama, M.1    Kawanabe, M.2
  • 27
    • 70649085072 scopus 로고    scopus 로고
    • Dimensionality reduction for density ratio estimation in high-dimensional spaces
    • Sugiyama M., Kawanabe M., Chui P.L. Dimensionality reduction for density ratio estimation in high-dimensional spaces. Neural Networks 2010, 23(1):44-59.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 44-59
    • Sugiyama, M.1    Kawanabe, M.2    Chui, P.L.3
  • 28
    • 34249047899 scopus 로고    scopus 로고
    • Covariate shift adaptation by importance weighted cross validation
    • MAY
    • Sugiyama M., Krauledat M., Müller K.-R. Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn. Res. 2007, 8(May):985-1005.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 985-1005
    • Sugiyama, M.1    Krauledat, M.2    Müller, K.-R.3
  • 29
    • 84926087908 scopus 로고    scopus 로고
    • Density Ratio Estimation in Machine Learning, Cambridge University Press, Cambridge, UK, to appear.
    • M. Sugiyama, T. Suzuki, T. Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, Cambridge, UK, to appear.
    • Sugiyama, M.1    Suzuki, T.2    Kanamori, T.3
  • 31
    • 79251612332 scopus 로고    scopus 로고
    • Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
    • Sugiyama M., Yamada M., von Bünau P., Suzuki T., Kanamori T., Kawanabe M. Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. Neural Networks 2011, 24(2):183-198.
    • (2011) Neural Networks , vol.24 , Issue.2 , pp. 183-198
    • Sugiyama, M.1    Yamada, M.2    von Bünau, P.3    Suzuki, T.4    Kanamori, T.5    Kawanabe, M.6
  • 33
    • 77951203581 scopus 로고    scopus 로고
    • Semi-supervised speaker identification under covariate shift
    • Yamada M., Sugiyama M., Matsui T. Semi-supervised speaker identification under covariate shift. Signal Process. 2010, 90(8):2353-2361.
    • (2010) Signal Process. , vol.90 , Issue.8 , pp. 2353-2361
    • Yamada, M.1    Sugiyama, M.2    Matsui, T.3
  • 34
    • 79957964889 scopus 로고    scopus 로고
    • Improving the accuracy of least-squares probabilistic classifiers
    • Yamada M., Sugiyama M., Wichern G., Simm J. Improving the accuracy of least-squares probabilistic classifiers. IEICE Trans. Inf. Syst. 2011, E94-D(6):1337-1340.
    • (2011) IEICE Trans. Inf. Syst. , vol.E94 D , Issue.6 , pp. 1337-1340
    • Yamada, M.1    Sugiyama, M.2    Wichern, G.3    Simm, J.4
  • 35
    • 84855233719 scopus 로고    scopus 로고
    • Relative Density-Ratio Estimation for Robust Distribution Comparison, Technical Report, arXiv
    • M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, M. Sugiyama, Relative Density-Ratio Estimation for Robust Distribution Comparison, Technical Report, arXiv, 2011.
    • (2011)
    • Yamada, M.1    Suzuki, T.2    Kanamori, T.3    Hachiya, H.4    Sugiyama, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.