메뉴 건너뛰기




Volumn 12, Issue 1, 2011, Pages

A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

Author keywords

[No Author keywords available]

Indexed keywords

AVERAGE SENSITIVITIES; CLASSIFICATION ANALYSIS; DISEASE CLASSIFICATION; GENE EXPRESSION LEVELS; LINEAR MIXTURE MODELING; MATRIX FACTORIZATIONS; NUMBER OF COMPONENTS; STANDARD FACTORIZATION;

EID: 84855185917     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-496     Document Type: Article
Times cited : (6)

References (51)
  • 1
    • 78149456734 scopus 로고    scopus 로고
    • A factorization method for the classification of infrared spectra
    • 10.1186/1471-2105-11-561, 3247165, 21078178
    • Henneges C, Laskov P, Darmawan E, Backhaus J, Kammerer B, Zell A. A factorization method for the classification of infrared spectra. BMC Bioinformatics 2010, 11:561. 10.1186/1471-2105-11-561, 3247165, 21078178.
    • (2010) BMC Bioinformatics , vol.11 , pp. 561
    • Henneges, C.1    Laskov, P.2    Darmawan, E.3    Backhaus, J.4    Kammerer, B.5    Zell, A.6
  • 2
    • 79951495824 scopus 로고    scopus 로고
    • A Three Component Latent Class Model for Robust Semiparametric Gene Discovery
    • Article 7
    • Alfo M, Farcomeni A, Tardella L. A Three Component Latent Class Model for Robust Semiparametric Gene Discovery. Stat Appl in Genet and Mol Biol 2011, 10(1). Article 7.
    • (2011) Stat Appl in Genet and Mol Biol , vol.10 , Issue.1
    • Alfo, M.1    Farcomeni, A.2    Tardella, L.3
  • 4
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • 10.1093/bioinformatics/18.1.51, 11836211
    • Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics 2002, 18:51-60. 10.1093/bioinformatics/18.1.51, 11836211.
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 5
    • 41549100951 scopus 로고    scopus 로고
    • Analyzing M-CSF dependent monocyte/macrophage differentiation: Expression modes and meta-modes derived from an independent component analysis
    • 10.1186/1471-2105-9-100, 2277398, 18279525
    • Lutter D, Ugocsai P, Grandl M, Orso E, Theis F, Lang EW, Schmitz G. Analyzing M-CSF dependent monocyte/macrophage differentiation: Expression modes and meta-modes derived from an independent component analysis. BMC Bioinformatics 2008, 9:100. 10.1186/1471-2105-9-100, 2277398, 18279525.
    • (2008) BMC Bioinformatics , vol.9 , pp. 100
    • Lutter, D.1    Ugocsai, P.2    Grandl, M.3    Orso, E.4    Theis, F.5    Lang, E.W.6    Schmitz, G.7
  • 7
    • 33645794993 scopus 로고    scopus 로고
    • Biclustering of gene expression data by non-smooth non-negative matrix factorization
    • 10.1186/1471-2105-7-78, 1434777, 16503973
    • Carmona-Saez P, Pascual-Marqui RD, Tirado F, Carazo JM, Pascual-Montano A. Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 2006, 7:78. 10.1186/1471-2105-7-78, 1434777, 16503973.
    • (2006) BMC Bioinformatics , vol.7 , pp. 78
    • Carmona-Saez, P.1    Pascual-Marqui, R.D.2    Tirado, F.3    Carazo, J.M.4    Pascual-Montano, A.5
  • 8
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • 10.1186/gb-2003-4-11-r76, 329130, 14611662
    • Lee SI, Batzoglou S. Application of independent component analysis to microarrays. Genome Biol 2003, 4:R76. 10.1186/gb-2003-4-11-r76, 329130, 14611662.
    • (2003) Genome Biol , vol.4
    • Lee, S.I.1    Batzoglou, S.2
  • 9
    • 10244255213 scopus 로고    scopus 로고
    • Biologically valid linear factor models of gene expression
    • 10.1093/bioinformatics/bth354, 15201181
    • Girolami M, Breitling R. Biologically valid linear factor models of gene expression. Bioinformatics 2004, 20:3021-3033. 10.1093/bioinformatics/bth354, 15201181.
    • (2004) Bioinformatics , vol.20 , pp. 3021-3033
    • Girolami, M.1    Breitling, R.2
  • 10
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • 10.1073/pnas.0308531101, 384712, 15016911
    • Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 2004, 101:4164-4169. 10.1073/pnas.0308531101, 384712, 15016911.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 4164-4169
    • Brunet, J.P.1    Tamayo, P.2    Golub, T.R.3    Mesirov, J.P.4
  • 11
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • 10.1093/bioinformatics/bti653, 16244221
    • Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005, 21:3970-3975. 10.1093/bioinformatics/bti653, 16244221.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 12
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • 10.1093/bioinformatics/btm134, 17483501
    • Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 2007, 23:1495-1502. 10.1093/bioinformatics/btm134, 17483501.
    • (2007) Bioinformatics , vol.23 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 13
    • 3543076921 scopus 로고    scopus 로고
    • Application of the GA/KNN method to SELDI proteomics data
    • 10.1093/bioinformatics/bth098, 14962943
    • Li L, Umbach DM, Terry P, Taylor JA. Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 2004, 20:1638-1640. 10.1093/bioinformatics/bth098, 14962943.
    • (2004) Bioinformatics , vol.20 , pp. 1638-1640
    • Li, L.1    Umbach, D.M.2    Terry, P.3    Taylor, J.A.4
  • 14
    • 19544394460 scopus 로고    scopus 로고
    • Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
    • 10.1093/bioinformatics/bti370, 15784749
    • Yu JS, Ongarello S, Fiedler R, Chen XW, Toffolo G, Cobelli C, Trajanoski Z. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 2005, 21:2200-2209. 10.1093/bioinformatics/bti370, 15784749.
    • (2005) Bioinformatics , vol.21 , pp. 2200-2209
    • Yu, J.S.1    Ongarello, S.2    Fiedler, R.3    Chen, X.W.4    Toffolo, G.5    Cobelli, C.6    Trajanoski, Z.7
  • 15
    • 25144474549 scopus 로고    scopus 로고
    • Ensemble dependence model for classification and prediction of cancer and normal gene expression data
    • 10.1093/bioinformatics/bti483, 15879455
    • Qiu P, Wang ZJ, Liu RKJ. Ensemble dependence model for classification and prediction of cancer and normal gene expression data. Bioinformatics 2005, 21:3114-3121. 10.1093/bioinformatics/bti483, 15879455.
    • (2005) Bioinformatics , vol.21 , pp. 3114-3121
    • Qiu, P.1    Wang, Z.J.2    Liu, R.K.J.3
  • 16
    • 69849106821 scopus 로고    scopus 로고
    • Capillary electrophoresis-mass spectrometry as powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments
    • Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra J, Dominiczak AF. Capillary electrophoresis-mass spectrometry as powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev 2008, 28:703-724.
    • (2008) Mass Spectrom Rev , vol.28 , pp. 703-724
    • Mischak, H.1    Coon, J.J.2    Novak, J.3    Weissinger, E.M.4    Schanstra, J.5    Dominiczak, A.F.6
  • 20
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation 1997, 9:1483-1492.
    • (1997) Neural Computation , vol.9 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 22
    • 77749324141 scopus 로고    scopus 로고
    • Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass spectrometry: sparseness-based robust multicomponent analysis
    • 10.1021/ac902640y, 20131872
    • Kopriva I, Jeric I. Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass spectrometry: sparseness-based robust multicomponent analysis. Analytical Chemistry 2010, 82:1911-1920. 10.1021/ac902640y, 20131872.
    • (2010) Analytical Chemistry , vol.82 , pp. 1911-1920
    • Kopriva, I.1    Jeric, I.2
  • 23
    • 70349281485 scopus 로고    scopus 로고
    • Multi-component Analysis: Blind Extraction of Pure Components Mass Spectra using Sparse Component Analysis
    • 10.1002/jms.1627, 19670286
    • Kopriva I, Jerić I. Multi-component Analysis: Blind Extraction of Pure Components Mass Spectra using Sparse Component Analysis. Journal of Mass Spectrometry 2009, 44:1378-1388. 10.1002/jms.1627, 19670286.
    • (2009) Journal of Mass Spectrometry , vol.44 , pp. 1378-1388
    • Kopriva, I.1    Jerić, I.2
  • 24
    • 0033308514 scopus 로고    scopus 로고
    • A fast algorithm for estimating overcomplete ICA bases for image windows
    • Washington DC, USA
    • Hyvärinen A, Cristescu R, Oja E. A fast algorithm for estimating overcomplete ICA bases for image windows. Proc Int Joint Conf On Neural Networks 1999, 894-899. Washington DC, USA.
    • (1999) Proc Int Joint Conf On Neural Networks , pp. 894-899
    • Hyvärinen, A.1    Cristescu, R.2    Oja, E.3
  • 25
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • 10.1162/089976600300015826, 10636946
    • Lewicki M, Sejnowski TJ. Learning overcomplete representations. Neural Comput 2000, 12:337-365. 10.1162/089976600300015826, 10636946.
    • (2000) Neural Comput , vol.12 , pp. 337-365
    • Lewicki, M.1    Sejnowski, T.J.2
  • 26
    • 0035501128 scopus 로고    scopus 로고
    • Underdetermined blind source separation using sparse representations
    • Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations. Signal Proc 2001, 81:2353-2362.
    • (2001) Signal Proc , vol.81 , pp. 2353-2362
    • Bofill, P.1    Zibulevsky, M.2
  • 27
    • 23044451368 scopus 로고    scopus 로고
    • Sparse component analysis and blind source separation of underdetermined mixtures
    • Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans Neural Net 2005, 16:992-996.
    • (2005) IEEE Trans Neural Net , vol.16 , pp. 992-996
    • Georgiev, P.1    Theis, F.2    Cichocki, A.3
  • 28
    • 2442473143 scopus 로고    scopus 로고
    • Analysis of Sparse Representation and Blind Source Separation
    • 10.1162/089976604773717586, 15130247
    • Li Y, Cichocki A, Amari S. Analysis of Sparse Representation and Blind Source Separation. Neural Comput 2004, 16:1193-1234. 10.1162/089976604773717586, 15130247.
    • (2004) Neural Comput , vol.16 , pp. 1193-1234
    • Li, Y.1    Cichocki, A.2    Amari, S.3
  • 29
  • 30
    • 37749030729 scopus 로고    scopus 로고
    • Hierarchical ALS Algorithms for Nonnegative Matrix Factorization and 3D Tensor Factorization
    • Cichocki A, Zdunek R, Amari SI. Hierarchical ALS Algorithms for Nonnegative Matrix Factorization and 3D Tensor Factorization. LNCS 2007, 4666:169-176.
    • (2007) LNCS , vol.4666 , pp. 169-176
    • Cichocki, A.1    Zdunek, R.2    Amari, S.I.3
  • 31
    • 70450159554 scopus 로고    scopus 로고
    • Blind decomposition of low-dimensional multi-spectral image by sparse component analysis
    • Kopriva I, Cichocki A. Blind decomposition of low-dimensional multi-spectral image by sparse component analysis. J of Chemometrics 2009, 23:590-597.
    • (2009) J of Chemometrics , vol.23 , pp. 590-597
    • Kopriva, I.1    Cichocki, A.2
  • 32
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer PO. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 2004, 5:1457-1469.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 33
    • 67349149997 scopus 로고    scopus 로고
    • An algorithm for mixing matrix estimation in instantaneous blind source separation
    • Reju VG, Koh SN, Soon IY. An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal Proc 2009, 89:1762-1773.
    • (2009) Signal Proc , vol.89 , pp. 1762-1773
    • Reju, V.G.1    Koh, S.N.2    Soon, I.Y.3
  • 34
    • 67650178769 scopus 로고    scopus 로고
    • Underdetermined Blind Source Separation Based on Subspace Representation
    • Kim SG, Yoo CD. Underdetermined Blind Source Separation Based on Subspace Representation. IEEE Trans Sig Proc 2009, 57:2604-2614.
    • (2009) IEEE Trans Sig Proc , vol.57 , pp. 2604-2614
    • Kim, S.G.1    Yoo, C.D.2
  • 35
    • 44649197165 scopus 로고    scopus 로고
    • Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering
    • Naini FM, Mohimani GH, Babaie-Zadeh M, Jutten C. Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering. Neurocomputing 2008, 71:2330-2343.
    • (2008) Neurocomputing , vol.71 , pp. 2330-2343
    • Naini, F.M.1    Mohimani, G.H.2    Babaie-Zadeh, M.3    Jutten, C.4
  • 36
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Soc B 1996, 58:267-288.
    • (1996) J Royal Statist Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 37
    • 77952743135 scopus 로고    scopus 로고
    • Computational Methods for Sparse Solution of Linear Inverse Problems
    • Tropp JA, Wright SJ. Computational Methods for Sparse Solution of Linear Inverse Problems. Proc of the IEEE 2010, 98:948-958.
    • (2010) Proc of the IEEE , vol.98 , pp. 948-958
    • Tropp, J.A.1    Wright, S.J.2
  • 38
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J on Imag Sci 2009, 2:183-202.
    • (2009) SIAM J on Imag Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 39
    • 84888284529 scopus 로고    scopus 로고
    • Selected publications list of professor Amir Beck
    • Selected publications list of professor Amir Beck. , http://ie.technion.ac.il/Home/Users/becka.html
  • 43
    • 84888274655 scopus 로고    scopus 로고
    • National Cancer Institute clinical proteomics program
    • National Cancer Institute clinical proteomics program. , http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
  • 45
    • 77955325026 scopus 로고    scopus 로고
    • A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data
    • Yang P, Zhang Z, Zhou BB, Zomaya AY. A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data. Neurocomputing 2010, 73:2317-2331.
    • (2010) Neurocomputing , vol.73 , pp. 2317-2331
    • Yang, P.1    Zhang, Z.2    Zhou, B.B.3    Zomaya, A.Y.4
  • 48
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • 10.1073/pnas.96.12.6745, 21986, 10359783
    • Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 1999, 96:6745-6750. 10.1073/pnas.96.12.6745, 21986, 10359783.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 49
    • 84888281765 scopus 로고    scopus 로고
    • Data pertaining to the article 'Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays'
    • Data pertaining to the article 'Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays'. , http://genomics-pubs.princeton.edu/oncology/affydata/index.html
  • 50
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • 10.1073/pnas.102102699, 124442, 11983868
    • Ambroise C, McLachlan G J. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 2002, 99:6562-6566. 10.1073/pnas.102102699, 124442, 11983868.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan G, J.2
  • 51
    • 24144440779 scopus 로고    scopus 로고
    • Gene extraction for cancer diagnosis using support vector machines
    • 10.1016/j.artmed.2005.01.006, 16026974
    • Huang TM, Kecman V. Gene extraction for cancer diagnosis using support vector machines. Artificial Intelligence in Medicine 2005, 35:185-194. 10.1016/j.artmed.2005.01.006, 16026974.
    • (2005) Artificial Intelligence in Medicine , vol.35 , pp. 185-194
    • Huang, T.M.1    Kecman, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.