메뉴 건너뛰기




Volumn 23, Issue 11, 2009, Pages 590-597

Blind decomposition of low-dimensional multi-spectral image by sparse component analysis

Author keywords

Cell imaging; Chemical imaging; Factorization; Multi spectral imaging; Nonnegative matrix; Sparse component analysis

Indexed keywords

IMAGE ANALYSIS; LINEAR PROGRAMMING; MATRIX ALGEBRA; MATRIX FACTORIZATION;

EID: 70450159554     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1257     Document Type: Article
Times cited : (15)

References (43)
  • 1
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 suite
    • Adams JB, Smith MO. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 suite. J. Geophys. Res. 1986; 91: 8098-8112.
    • (1986) J. Geophys. Res , vol.91 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2
  • 2
    • 0027334540 scopus 로고
    • Linear mixing and estimation of ground cover proportions
    • Settle JJ, Drake NA. Linear mixing and estimation of ground cover proportions. Int. J. Remote Sens. 1993; 14: 1159-1177.
    • (1993) Int. J. Remote Sens , vol.14 , pp. 1159-1177
    • Settle, J.J.1    Drake, N.A.2
  • 4
    • 33748623423 scopus 로고    scopus 로고
    • Independent-component analysis for hyper-spectral remote sensing imagery classification
    • 017008
    • Du Q, Kopriva I, Szu H. Independent-component analysis for hyper-spectral remote sensing imagery classification. Opt. Eng. 2006; 45: 017008: 1-13.
    • (2006) Opt. Eng , vol.45 , pp. 1-13
    • du, Q.1    Kopriva, I.2    Szu, H.3
  • 5
    • 38349168970 scopus 로고    scopus 로고
    • Automated target detection and discrimination using constrained kurtosis maximization
    • Du Q, Kopriva I. Automated target detection and discrimination using constrained kurtosis maximization. IEEE Geosci. Remote Sens. Lett. 2008; 5: 38-42.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , pp. 38-42
    • du, Q.1    Kopriva, I.2
  • 11
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithmbased on neuromimetic architecture
    • Jutten C, Herault J. Blind separation of sources, part I: an adaptive algorithmbased on neuromimetic architecture. Sig. Proc. 1991;24: 1-10.
    • (1991) Sig. Proc , vol.24 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 12
    • 0028416938 scopus 로고
    • Independent component analysis-a new concept?
    • Comon P. Independent component analysis-a new concept? Sig.Proc. 1994; 36: 287-314.
    • (1994) Sig.Proc , vol.36 , pp. 287-314
    • Comon, P.1
  • 13
    • 0027812550 scopus 로고
    • Blind beamforming for non-Gaussian signals
    • Cardoso JF, Soulomniac A. Blind beamforming for non-Gaussian signals. Proc. IEE F 1993; 140: 362-370.
    • (1993) Proc. IEE F , vol.140 , pp. 362-370
    • Cardoso, J.F.1    Soulomniac, A.2
  • 14
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Nascimento JMP, Bioucas Dias JM. Does independent component analysis play a role in unmixing hyperspectral data? IEEE Trans. Geosci. Remote Sensing 2005; 43: 175-187.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , pp. 175-187
    • Nascimento, J.M.P.1    Bioucas Dias, J.M.2
  • 16
    • 2442473143 scopus 로고    scopus 로고
    • Analysis of sparse representation and blind source separation
    • Li Y, Cichocki A, Amari S. Analysis of sparse representation and blind source separation. Neural Comput. 2004; 16: 1193-1234.
    • (2004) Neural Comput , vol.16 , pp. 1193-1234
    • Li, Y.1    Cichocki, A.2    Amari, S.3
  • 17
  • 18
    • 44649197165 scopus 로고    scopus 로고
    • Estimating the mixing matrix in sparse component analysis (SCA) based on partial k-dimensional subspace clustering
    • Naini FM, Mohimani GH, Babaie-Zadeh M, Jutten C. Estimating the mixing matrix in sparse component analysis (SCA) based on partial k-dimensional subspace clustering. Neurocomputing 2008; 71: 2330-2343.
    • (2008) Neurocomputing , vol.71 , pp. 2330-2343
    • Naini, F.M.1    Mohimani, G.H.2    Babaie-Zadeh, M.3    Jutten, C.4
  • 19
    • 54749083549 scopus 로고    scopus 로고
    • Convex analysis framework for blind separation of non-negative sources
    • Chan TH, Ma WK, Chi Ch Y, Wang Y. A convex analysis framework for blind separation of non-negative sources. IEEE Trans. Signal Process. 2008; 56: 5120-5134.
    • (2008) IEEE Trans. Signal Process , vol.56 , pp. 5120-5134
    • Chan, T.H.1    Ma, W.K.2    Chi Ch, Y.3    Wang, Y.A.4
  • 20
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999; 401: 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 34247173538 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with constrained second-order optimization
    • Zdunek R, Cichocki A. Nonnegative matrix factorization with constrained second-order optimization. Sig. Proc. 2008; 87: 1904-1916.
    • (2008) Sig. Proc , vol.87 , pp. 1904-1916
    • Zdunek, R.1    Cichocki, A.2
  • 23
    • 37749030729 scopus 로고    scopus 로고
    • Hierarchical ALS algorithms for nonnegative matrix factorization and 3D tensor factorization
    • Cichocki A, Zdunek R, Amari SI. Hierarchical ALS algorithms for nonnegative matrix factorization and 3D tensor factorization. LNCS 2007; 4666: 169-176.
    • (2007) LNCS , vol.4666 , pp. 169-176
    • Cichocki, A.1    Zdunek, R.2    Amari, S.I.3
  • 24
    • 54249132657 scopus 로고    scopus 로고
    • Flexible component analysis for sparse, smooth, nonnagative coding or representation
    • Cichocki A, Phan A-H, Zdunek R, Zhang L-Q. Flexible component analysis for sparse, smooth, nonnagative coding or representation. LNCS 2008; 4984: 811-820.
    • (2008) LNCS , vol.4984 , pp. 811-820
    • Cichocki, A.1    Phan, A.-H.2    Zdunek, R.3    Zhang, L.-Q.4
  • 26
    • 33746905129 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization
    • Cichocki A, Zdunek R. Multilayer nonnegative matrix factorization. Electron. Lett. 2006; 42: 947-948.
    • (2006) Electron. Lett , vol.42 , pp. 947-948
    • Cichocki, A.1    Zdunek, R.2
  • 27
    • 34547885713 scopus 로고    scopus 로고
    • Estimating the number of pure chemical components in a mixture by maximum likelihood
    • Levina E, Wagaman AS, Callender AF, Mandair GS, Morris MD. Estimating the number of pure chemical components in a mixture by maximum likelihood. J. Chemometr. 2007; 21: 24-34.
    • (2007) J. Chemometr , vol.21 , pp. 24-34
    • Levina, E.1    Wagaman, A.S.2    Callender, A.F.3    Mandair, G.S.4    Morris, M.D.5
  • 28
    • 0001561629 scopus 로고
    • Determination of the number of factors and experimental error in a data matrix
    • Malinowski ER. Determination of the number of factors and experimental error in a data matrix. Anal. Chem. 1977; 49: 612-617.
    • (1977) Anal. Chem , vol.49 , pp. 612-617
    • Malinowski, E.R.1
  • 29
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Chang CI, Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 2004; 42: 608-619.
    • (2004) IEEE Trans. Geosci. Remote Sensing , vol.42 , pp. 608-619
    • Chang, C.I.1    du, Q.2
  • 30
    • 0035501128 scopus 로고    scopus 로고
    • Underdetermined blind source separation using sparse representations
    • Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations. Sig. Proc. 2001; 81: 2353-2362.
    • (2001) Sig. Proc , vol.81 , pp. 2353-2362
    • Bofill, P.1    Zibulevsky, M.2
  • 31
    • 1542333710 scopus 로고    scopus 로고
    • 1- norm solutions for underdetermined source separation
    • Takigawa I, Kudo M, Toyama J. Performance analysis of minimum l1- norm solutions for underdetermined source separation. IEEE Trans. Signal Process. 2004; 52: 582-591.
    • (2004) IEEE Trans. Signal Process , vol.52 , pp. 582-591
    • Takigawa, I.1    Kudo, M.2    Toyama, J.3
  • 32
    • 0037418225 scopus 로고    scopus 로고
    • 1 minimization
    • Donoho DL, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via l1 minimization. Proc. Natl Acad. Sci. USA 2003; 100: 2197-2202.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 2197-2202
    • Donoho, D.L.1    Elad, M.2
  • 34
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007; 53: 4655-4666.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 35
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Figuiredo MAT, Nowak RD, Wright SJ. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Selected Topics Sig. Proc. 2007; 1: 586-597.
    • (2007) IEEE J. Selected Topics Sig. Proc , vol.1 , pp. 586-597
    • Figuiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 36
    • 65349111354 scopus 로고    scopus 로고
    • Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation
    • Kopriva I, Peršin A. Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demar-cation. Med. Image Anal. 2009; 13: 507-518.
    • (2009) Med. Image Anal , vol.13 , pp. 507-518
    • Kopriva, I.1    Peršin, A.2
  • 37
    • 85153555626 scopus 로고    scopus 로고
    • http://www.stanford.edu/boyd/l1_ls/
  • 38
    • 85153542474 scopus 로고    scopus 로고
    • Probing the pareto frontier for basis pursuit solutions
    • Van Den Berg E, Friedlander MP. Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 2008; 31: 890-912.
    • (1998) SIAM J. Sci. Comput , vol.20 , pp. 33-61
    • van den Berg, E.1    Friedlander, M.P.2
  • 39
    • 0035907069 scopus 로고    scopus 로고
    • Diagnostic cancer in vivo
    • Koenig F, Knittel J, Stepp H. Diagnostic cancer in vivo. Science 2001; 292: 1401-1403.
    • (2001) Science , vol.292 , pp. 1401-1403
    • Koenig, F.1    Knittel, J.2    Stepp, H.3
  • 40
    • 27844555482 scopus 로고    scopus 로고
    • A general solution to blind inverse problems for sparse input signal
    • Luengo D, Santamaria I, Vielva L. A general solution to blind inverse problems for sparse input signal. Neurocomputing 2005; 69: 198-215.
    • (2005) Neurocomputing , vol.69 , pp. 198-215
    • Luengo, D.1    Santamaria, I.2    Vielva, L.3
  • 41
    • 23044451368 scopus 로고    scopus 로고
    • Sparse component analysis and blind source separation of underdetermined mixtures
    • Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 2005; 16: 992-996.
    • (2005) IEEE Trans. Neural Netw , vol.16 , pp. 992-996
    • Georgiev, P.1    Theis, F.2    Cichocki, A.3
  • 42
    • 0037297546 scopus 로고    scopus 로고
    • RosénA,LarkoO,Wennberg AM. Fluorescence contrast and threshold limit: Implications for photodynamic diagnosis of basal cell carcinoma
    • Ericson MB, Sandberg C, Gudmundson F, RosénA,LarkoO,Wennberg AM. Fluorescence contrast and threshold limit: implications for photodynamic diagnosis of basal cell carcinoma. J. Photochem. Photo-biol. B: Biol. 2003; 69: 121-127.
    • (2003) J. Photochem. Photo-biol. B: Biol , vol.69 , pp. 121-127
    • Ericson, M.B.1    Sandberg, C.2    Gudmundson, F.3
  • 43
    • 0033976753 scopus 로고    scopus 로고
    • Fluorescence photodiagnostics and photobleaching studies of cancerous lesions using ratio imaging and spectroscopic techniques
    • Scott MA, Hopper C, Sahota A, Springett R, Mcllroy BW, Bown SG, MacRobert AJ. Fluorescence photodiagnostics and photobleaching studies of cancerous lesions using ratio imaging and spectroscopic techniques. Lasers Med Sci 2000; 15: 63-72.
    • (2000) Lasers Med Sci , vol.15 , pp. 63-72
    • Scott, M.A.1    Hopper, C.2    Sahota, A.3    Springett, R.4    McLlroy, B.W.5    Bown, S.G.6    Macrobert, A.J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.