메뉴 건너뛰기




Volumn 73, Issue 13-15, 2010, Pages 2317-2331

A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data

Author keywords

Classification; Clustering; Feature selection; Hybrid algorithm; Mass spectrometry

Indexed keywords

BIO-MARKER DISCOVERY; CLUSTERING; CLUSTERING FEATURE; DATA MINING TECHNIQUES; EARLY DETECTION; FEATURE SELECTION; FEATURE SELECTION ALGORITHM; HYBRID ALGORITHMS; ITERATIVE PROCEDURES; K-MEANS CLUSTERING; LOWER CORRELATION; MASS SPECTROMETRY DATA; PROTEOMES; PROTEOMICS; SAMPLE CLASSIFICATION; STOCHASTIC NATURE; WRAPPER-BASED FEATURE SELECTION;

EID: 77955325026     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.02.022     Document Type: Article
Times cited : (13)

References (32)
  • 1
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature 2003, 422:198-207.
    • (2003) Nature , vol.422 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 2
    • 1242328742 scopus 로고    scopus 로고
    • SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer
    • Petricoin E.F., Liotta L.A. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Current Opinion in Biotechnology 2004, 15:24-30.
    • (2004) Current Opinion in Biotechnology , vol.15 , pp. 24-30
    • Petricoin, E.F.1    Liotta, L.A.2
  • 3
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
    • Somorjai R.L., Dolenko B., Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003, 19:1484-1491.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 4
    • 25444463295 scopus 로고    scopus 로고
    • Feature selection and nearest centroid classification for protein mass spectrometry
    • Levner I. Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 2005, 6:68.
    • (2005) BMC Bioinformatics , vol.6 , pp. 68
    • Levner, I.1
  • 5
    • 42049102625 scopus 로고    scopus 로고
    • Approaches to dimensionality reduction in proteomic biomarker studies
    • Hilario M., Kalousis A. Approaches to dimensionality reduction in proteomic biomarker studies. Briefings in Bioinformatics 2008, 9:102-118.
    • (2008) Briefings in Bioinformatics , vol.9 , pp. 102-118
    • Hilario, M.1    Kalousis, A.2
  • 6
    • 0345166891 scopus 로고    scopus 로고
    • Detection of cancer-specific markers amid massive mass spectral data
    • Zhu W., Wang X., Ma Y., Rao M., Glimm J., Kovach S. Detection of cancer-specific markers amid massive mass spectral data. PNAS 2003, 100:14666-14671.
    • (2003) PNAS , vol.100 , pp. 14666-14671
    • Zhu, W.1    Wang, X.2    Ma, Y.3    Rao, M.4    Glimm, J.5    Kovach, S.6
  • 9
  • 10
    • 13244277613 scopus 로고    scopus 로고
    • Performance of a genetic algorithm for mass spectrometry proteomics
    • Jeffries N. Performance of a genetic algorithm for mass spectrometry proteomics. BMC Bioinformatics 2004, 5:180.
    • (2004) BMC Bioinformatics , vol.5 , pp. 180
    • Jeffries, N.1
  • 11
    • 3543076921 scopus 로고    scopus 로고
    • Application of the GA/KNN method to SELDI proteomics data
    • Li L., Umbach D.M., Terry P., Taylor J.A. Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 2004, 20:1638-1640.
    • (2004) Bioinformatics , vol.20 , pp. 1638-1640
    • Li, L.1    Umbach, D.M.2    Terry, P.3    Taylor, J.A.4
  • 12
    • 46149101211 scopus 로고    scopus 로고
    • Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles
    • Ge G., Wong G.W. Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles. BMC Bioinformatics 2008, 9:275.
    • (2008) BMC Bioinformatics , vol.9 , pp. 275
    • Ge, G.1    Wong, G.W.2
  • 13
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 2000, 33:25-41.
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 14
    • 0037976550 scopus 로고    scopus 로고
    • Improved gene selection for classification of microarrays, in: Pacific Symposium on Biocomputing
    • J. Jaeger, R. Sengupta, W.L. Ruzzo, Improved gene selection for classification of microarrays, in: Pacific Symposium on Biocomputing, 2003, pp. 53-64.
    • (2003) , pp. 53-64
    • Jaeger, J.1    Sengupta, R.2    Ruzzo, W.L.3
  • 15
    • 34547124562 scopus 로고    scopus 로고
    • Selecting dissimilar genes for multi-class classification, an application in cancer subtyping
    • Cai Z., Goebel R., Salavatipour M.R., Lin G. Selecting dissimilar genes for multi-class classification, an application in cancer subtyping. BMC Bioinformatics 2007, 8:206.
    • (2007) BMC Bioinformatics , vol.8 , pp. 206
    • Cai, Z.1    Goebel, R.2    Salavatipour, M.R.3    Lin, G.4
  • 17
    • 17444386734 scopus 로고    scopus 로고
    • HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
    • Wang Y., Makedon F., Ford J., Pearlman J. HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 2005, 21:1530-1537.
    • (2005) Bioinformatics , vol.21 , pp. 1530-1537
    • Wang, Y.1    Makedon, F.2    Ford, J.3    Pearlman, J.4
  • 18
    • 57049137817 scopus 로고    scopus 로고
    • A clustering based hybrid system for mass spectrometry data analysis, in: Proceedings of the Third IAPR International Conference on Pattern Recognition in Bioinformatics, Lecture Notes in Bioinformatics
    • P. Yang, Z. Zhang, A clustering based hybrid system for mass spectrometry data analysis, in: Proceedings of the Third IAPR International Conference on Pattern Recognition in Bioinformatics, Lecture Notes in Bioinformatics, vol. 5265, 2008, pp. 98-109.
    • (2008) , vol.5265 , pp. 98-109
    • Yang, P.1    Zhang, Z.2
  • 19
    • 71549138167 scopus 로고    scopus 로고
    • An ensemble of classifier with genetic algorithm based feature selection
    • Zhang Z., Yang P. An ensemble of classifier with genetic algorithm based feature selection. IEEE Intelligent Informatics Bulletin 2008, 9:18-24.
    • (2008) IEEE Intelligent Informatics Bulletin , vol.9 , pp. 18-24
    • Zhang, Z.1    Yang, P.2
  • 20
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • Li L., Weinberg C.R., Darden T.A., Pedersen L.G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001, 17:1131-1142.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 21
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larranage P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranage, P.3
  • 22
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J., Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 2002, 97:77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 23
    • 0035500276 scopus 로고    scopus 로고
    • Understanding the crucial role of attribute interaction
    • Freitas A.A. Understanding the crucial role of attribute interaction. Artificial Intelligence Review 2001, 16:177-199.
    • (2001) Artificial Intelligence Review , vol.16 , pp. 177-199
    • Freitas, A.A.1
  • 24
    • 34248330399 scopus 로고    scopus 로고
    • A blocking strategy to improve gene selection for classification of gene expression data
    • Bontempi G. A blocking strategy to improve gene selection for classification of gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2007, 4:293-300.
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , pp. 293-300
    • Bontempi, G.1
  • 25
    • 84956988905 scopus 로고    scopus 로고
    • Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting, in: Proceedings of the Second International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science
    • D. Ruta, B. Gabrys, Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting, in: Proceedings of the Second International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 2096, 2001, pp. 399-408.
    • (2001) , vol.2096 , pp. 399-408
    • Ruta, D.1    Gabrys, B.2
  • 29
    • 1842559788 scopus 로고    scopus 로고
    • Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments
    • Baggerly K.A., Morris J.S., Coombes K.R. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004, 20:777-785.
    • (2004) Bioinformatics , vol.20 , pp. 777-785
    • Baggerly, K.A.1    Morris, J.S.2    Coombes, K.R.3
  • 30
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 1992, 5:241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 31
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning, in: Proceedings of Multiple Classifier Systems, Lecture Notes in Computer Science
    • T. Dietterich, Ensemble methods in machine learning, in: Proceedings of Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 1857, 2000, pp. 1-15.
    • (2000) , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 32
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles, in: Proceedings of the National Conference on Artificial Intelligence
    • D. Opitz, Feature selection for ensembles, in: Proceedings of the National Conference on Artificial Intelligence, 1999, pp. 379-384.
    • (1999) , pp. 379-384
    • Opitz, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.