ANIMAL EXPERIMENT;
ANIMAL MODEL;
ANTIHYPERTENSIVE ACTIVITY;
ARTICLE;
BINDING AFFINITY;
CONTROLLED STUDY;
CRYSTAL STRUCTURE;
DRUG DESIGN;
DRUG IDENTIFICATION;
DRUG POTENCY;
DRUG RECEPTOR BINDING;
DRUG SELECTIVITY;
DRUG STRUCTURE;
DRUG SYNTHESIS;
HIGH THROUGHPUT SCREENING;
MOLECULAR DOCKING;
NONHUMAN;
RAT;
Cardiac steroidogenesis in the normal and failing heart
(b) Young, M. J.; Clyne, C. D.; Cole, T. J.; Funder, J. W. Cardiac Steroidogenesis in the Normal and Failing Heart. J. Clin. Endocrinol. Metab. 2001, 86, 5121-5126.
Mechanisms of disease: The role of aldosterone in kidney damage and clinical benefits of its blockade
(b) Del Vecchio, L.; Procaccio, M.; Vigano, S.; Cusi, D. Mechanisms of Disease: The Role of Aldosterone in Kidney Damage and Clinical Benefits of Its Blockade. Nat. Clin. Pract. Nephrol. 2007, 3, 42-49.
Eplerenone: A Selective Aldosterone Receptor Antagonist (SARA)
Delyani, J. A.; Rocha, R.; Cook, C. S.; Tobert, D. S; Levin, S.; Roniker, B.; Workman, D. L.; Sing, Y. L.; Whelihan, B. Eplerenone: A Selective Aldosterone Receptor Antagonist (SARA). Cardiovasc. Drug Rev. 2001, 19, 185-200.
A comparison of the aldosterone-blocking agents eplerenone and spironolactone
Struthers, A.; Krum, H.; Williams, G. H. A Comparison of the Aldosterone-Blocking Agents Eplerenone and Spironolactone. Clin. Cardiol. 2008, 31, 153-158.
Effect of spironolactone on blood pressure in subjects with resistant hypertension
(a) Chapman, N.; Dobson, J.; Wilson, S.; Dahlof, B.; Sever, P. S.; Wedel, H.; Poulter, N. R. Effect of Spironolactone on Blood Pressure in Subjects with Resistant Hypertension. Hypertension 2007, 49, 839-845.
Does aldosterone-to-renin ratio predict the antihypertensive effect of the aldosterone antagonist spironolactone?
(b) Mahmud, A.; Mahgoub, M.; Hall, M.; Feely, J. Does Aldosterone-to-Renin Ratio Predict the Antihypertensive Effect of the Aldosterone Antagonist Spironolactone? Am. J. Hypertens. 2005, 12, 1631-1635.
The effect of spironolactone on morbidity and mortality in patients with severe heart failure
Pitt, B.; Zannad, F.; Remme, W. J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure. N. Engl. J. Med. 1999, 341, 709-717.
Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy
(a) Mehdi, U. F.; Adams-Huet, B.; Raskin, P.; Vega, G. L.; Toto, R. D. Addition of Angiotensin Receptor Blockade or Mineralocorticoid Antagonism to Maximal Angiotensin-Converting Enzyme Inhibition in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2009, 20, 2641-2650.
Effectiveness of aldosterone blockade in patients with diabetic nephropathy
(b) Sato, A.; Hayashi, K.; Naruse, M; Saruta, T. Effectiveness of Aldosterone Blockade in Patients with Diabetic Nephropathy. Hypertension 2003, 41, 64-68.
Antialdosterones: Incidence and prevention of sexual side effects
de Gasparo, M.; Whitebread, S. E.; Preiswerk., G.; Jeunemaitre, X.; Corvol, P.; Menard, J. Antialdosterones: Incidence and Prevention of Sexual Side Effects. J. Steroid Biochem. 1989, 32, 223-227.
Pharmacokinetics and pharmacodynamics of mineralocorticoid blocking agents and their effects on potassium homeostasis
Sica, D. A. Pharmacokinetics and Pharmacodynamics of Mineralocorticoid Blocking Agents and Their Effects on Potassium Homeostasis. Heart Failure Rev. 2005, 10, 23-29.
(S)-N-{3-[1-cyclopropyl-1-(2,4-difluoro-phenyl)-ethyl]-1H-indol-7-yl} -methanesulfonamide: A potent, nonsteroidal, functional antagonist of the mineralocorticoid receptor
(b) Bell, M. G.; Gernert, D. L.; Grese, T. A.; Belvo, M. D.; Borromeo, P. S.; Kelley, S. A.; Kennedy, J. H.; Kolis, S. P.; Lander, P. A.; Richey, R.; Sharp, V. S.; Stephenson, G. A.; Williams, J. D.; Yu, H.; Zimmerman, K. M.; Steinberg, M. I.; Jadhav, P. K. (S)-N-{3-[1-Cyclopropyl-1-(2,4-difluoro-phenyl)- ethyl]-1H-indol-7-yl}-methanesulfonamide: A Potent, Nonsteroidal, Functional Antagonist of the Mineralocorticoid Receptor. J. Med. Chem. 2007, 50, 6443-6445.
Discovery of (3S,3aR)-2-(3-chloro-4-cyanophenyl)-3-cyclopentyl-3,3a,4,5- tetrahydro-2H-benzo[g]indazole-7-carboxylic Acid (PF-3882845), an Orally Efficacious Mineralocorticoid Receptor (MR) Antagonist for Hypertension and Nephropathy
(c) Meyers, M. J.; Arhancet, G. B.; Hockerman, S. L.; Chen, X.; Long, S. A.; Mahoney, M. W.; Rico, J. R.; Garland, D. J.; Blinn, J. R.; Collins, J. T.; Yang, S.; Huang, H. C.; McGee, K. F.; Wendling, J. M.; Dietz, J. D.; Payne, M. A.; Homer, B. L.; Heron, M. I.; Reitz, D. B.; Hu, X. Discovery of (3S,3aR)-2-(3-Chloro-4-cyanophenyl)-3-cyclopentyl-3,3a,4,5-tetrahydro-2H- benzo[g]indazole-7-carboxylic Acid (PF-3882845), an Orally Efficacious Mineralocorticoid Receptor (MR) Antagonist for Hypertension and Nephropathy. J. Med. Chem. 2010, 53, 5979-6002.
Synthesis, Modification, and Evaluation of (R)-de-O-methyllasiodiplodin and Analogs as Nonsteroidal Antagonists of Mineralocorticoid Receptor
(d) Jiang, C. S.; Zhou, R.; Gong, J. X.; Chen, L. L.; Kurtan, T.; Shen, X.; Guo, Y. W. Synthesis, Modification, and Evaluation of (R)-de-O- Methyllasiodiplodin and Analogs as Nonsteroidal Antagonists of Mineralocorticoid Receptor. Bioorg. Med. Chem. Lett. 2011, 21, 1171-1175.
A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule
(e) Fagart, J.; Hillisch, A.; Huyet, J.; Barfacker, L.; Fay, M.; Pleiss, U.; Pook, E.; Schafer, S.; Rafestin-Oblin, M. E.; Kolkhof, P. A New Mode of Mineralocorticoid Receptor Antagonism by a Potent and Selective Nonsteroidal Molecule. J. Biol. Chem. 2010, 285, 29932-29940.
Blocking the Renal Electrolyte Effects of Mineralocorticoids with an Orally Active Steroidal Spirolactone
Kagawa, C. M. Blocking the Renal Electrolyte Effects of Mineralocorticoids with an Orally Active Steroidal Spirolactone. Endocrinology 1960, 67, 125-132.
A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor
(a) Bledsoe, R. K.; Madauss, K. P.; Holt, J. A.; Apolito, C. J.; Lambert, M. H.; Pearce, K. H.; Stanley, T. B.; Stewart, E. L.; Trump, R. P.; Willson, T. M.; Williams, S. P. A Ligand-Mediated Hydrogen Bond Network Required for the Activation of the Mineralocorticoid Receptor. J. Biol. Chem. 2005, 280, 31283-31293.
Crystal Structure of a Mutant Mineralocorticoid Receptor Responsible for Hypertension
(b) Fagart, J.; Huyet, J.; Pinon, G. M.; Rochel, M.; Mayer, C.; Rafestin-Oblin, M. E. Crystal Structure of a Mutant Mineralocorticoid Receptor Responsible for Hypertension. Nat. Struct. Mol. Biol. 2005, 12, 554-555.
Structural basis of spirolactone recognition by the mineralocorticoid receptor
(c) Huyet, J.; Pinon, G. M.; Fay, M. R.; Fagart, J.; Rafestin-Oblin, M. E. Structural Basis of Spirolactone Recognition by the Mineralocorticoid Receptor. Mol. Pharmacol. 2007, 72, 563-571.
Refinement of macromolecular structures by the maximum-likelihood method
Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997, 53, 240-255.
MolProbity: All-atom structure validation for macromolecular crystallography
Chen, V. B.; Arendall, W. B. 3rd; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. MolProbity: All-Atom Structure Validation for Macromolecular Crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 12-21.