-
1
-
-
41949125685
-
Global stability of an SIR epidemic model with constant infectios period
-
F. Zhang, Z. Li, F. Zhang. Global stability of an SIR epidemic model with constant infectios period. Applied Mathematics and Computation, 2008, 199: 285-291.
-
(2008)
Applied Mathematics and Computation
, vol.199
, pp. 285-291
-
-
Zhang, F.1
Li, Z.2
Zhang, F.3
-
4
-
-
40849115174
-
Hopf bifurcation and stability of periodic solutions in a delayed eco-epidemiological system
-
J. Zhang, W. Li, X. Yan. Hopf bifurcation and stability of periodic solutions in a delayed eco-epidemiological system. Applied Mathematics and Computation, 2008, 198(2): 865-876.
-
(2008)
Applied Mathematics and Computation
, vol.198
, Issue.2
, pp. 865-876
-
-
Zhang, J.1
Li, W.2
Yan, X.3
-
6
-
-
34248219887
-
Dynamics of an HIV/AIDS model: The effect of time delay
-
S. Kovacs. Dynamics of an HIV/AIDS model: The effect of time delay. Applied Mathematics and Computation, 2007, 188(2): 1597-1609.
-
(2007)
Applied Mathematics and Computation
, vol.188
, Issue.2
, pp. 1597-1609
-
-
Kovacs, S.1
-
8
-
-
33846561621
-
Global stability of a delayed SIR epidemic model with density dependent birth and death rates
-
N. Yoshida, T. Hara. Global stability of a delayed SIR epidemic model with density dependent birth and death rates. Journal of Computational and Applied Mathematics, 2007, 201: 339-347.
-
(2007)
Journal of Computational and Applied Mathematics
, vol.201
, pp. 339-347
-
-
Yoshida, N.1
Hara, T.2
-
9
-
-
84867960899
-
An epidemic model with a time delay in transmission
-
Q. Khan, E. Krishnan. An epidemic model with a time delay in transmission. Applications of Mathematics, 2003, 3: 193-203.
-
(2003)
Applications of Mathematics
, vol.3
, pp. 193-203
-
-
Khan, Q.1
Krishnan, E.2
-
12
-
-
23844460516
-
Dynamics of a logistic population model with maturation delay and nonlinear birth rate
-
S. Ma, Q. Lu, M. Song. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems, 2005, 5(3): 735-752.
-
(2005)
Discrete and Continuous Dynamical Systems
, vol.5
, Issue.3
, pp. 735-752
-
-
Ma, S.1
Lu, Q.2
Song, M.3
-
14
-
-
10644240707
-
Global stability of an SIR epidemic model with time delay
-
W. Ma, M. Song, Y. Takeuchi. Global stability of an SIR epidemic model with time delay. Applied Mathematics Letters, 2004, 17: 1141-1145.
-
(2004)
Applied Mathematics Letters
, vol.17
, pp. 1141-1145
-
-
Ma, W.1
Song, M.2
Takeuchi, Y.3
-
15
-
-
34548849467
-
Stability and hopf bifurcation for a delayed prey- predator system with diffusion effects
-
X. Yan. Stability and hopf bifurcation for a delayed prey- predator system with diffusion effects. Applied Mathematics and Computation, 2007, 192: 552-566.
-
(2007)
Applied Mathematics and Computation
, vol.192
, pp. 552-566
-
-
Yan, X.1
-
16
-
-
13644275724
-
Global properties of a delayed sir model with temporary immunity and nonlinear incidence rate
-
Y. Kyrychko, K. Blyuss. Global properties of a delayed sir model with temporary immunity and nonlinear incidence rate. Nonlinear Analysis: Real World Applications, 2005, 6: 495-507.
-
(2005)
Nonlinear Analysis: Real World Applications
, vol.6
, pp. 495-507
-
-
Kyrychko, Y.1
Blyuss, K.2
-
17
-
-
28444444207
-
Bifurcation analysis in a predator- prey system with time delay
-
Y. Song, S. Yan Bifurcation analysis in a predator- prey system with time delay. Nonlinear Analysis: Real World Applications, 2006, 7(2): 265-284.
-
(2006)
Nonlinear Analysis: Real World Applications
, vol.7
, Issue.2
, pp. 265-284
-
-
Song, Y.1
Yan, S.2
-
19
-
-
56549121935
-
Stability and hopf bifurcation analysis on a prey- predator model with discrete and distributed delays
-
Z. Ma, H. Huo, C. Liu. Stability and hopf bifurcation analysis on a prey- predator model with discrete and distributed delays. Nonlinear Analysis: Real World Applications, 2009, 10(2): 1160-1172.
-
(2009)
Nonlinear Analysis: Real World Applications
, vol.10
, Issue.2
, pp. 1160-1172
-
-
Ma, Z.1
Huo, H.2
Liu, C.3
-
20
-
-
67650489777
-
Mathematical analysis of a model for HIV-malaria co-infection
-
Z. Mukandavire, A. Gumel. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering, 2009, 6(2): 333-363.
-
(2009)
Mathematical Biosciences and Engineering
, vol.6
, Issue.2
, pp. 333-363
-
-
Mukandavire, Z.1
Gumel, A.2
|