-
1
-
-
0029704003
-
Stability and Hopf bifurcation for a population delay model with diffusion effects
-
Busenberg S., and Huang W. Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Diff. Eqs. 124 (1996) 80-127
-
(1996)
J. Diff. Eqs.
, vol.124
, pp. 80-127
-
-
Busenberg, S.1
Huang, W.2
-
2
-
-
0035866130
-
Stability and bifurcation for a delayed predator-prey model and the effect of diffusion
-
Faria T. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J. Math. Anal. Appl. 254 (2001) 433-463
-
(2001)
J. Math. Anal. Appl.
, vol.254
, pp. 433-463
-
-
Faria, T.1
-
3
-
-
23044518055
-
Normal forms and Hopf bifurcation for partial differential equations with delays
-
Faria T. Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Amer. Math. Soc. 352 (2000) 2217-2238
-
(2000)
Trans. Amer. Math. Soc.
, vol.352
, pp. 2217-2238
-
-
Faria, T.1
-
4
-
-
0002703302
-
Diffusion and hereditary effects in a class of population models
-
Busenberg S., and Cooke C. (Eds), Academic Press
-
Green D., and Stech H. Diffusion and hereditary effects in a class of population models. In: Busenberg S., and Cooke C. (Eds). Differential Equations and Applications in Ecology, Epidemics and Population Problems (1981), Academic Press 19-28
-
(1981)
Differential Equations and Applications in Ecology, Epidemics and Population Problems
, pp. 19-28
-
-
Green, D.1
Stech, H.2
-
6
-
-
0030098369
-
Stability and delays in a predator-prey system
-
He X. Stability and delays in a predator-prey system. J. Math. Anal. Appl. 198 (1996) 355-370
-
(1996)
J. Math. Anal. Appl.
, vol.198
, pp. 355-370
-
-
He, X.1
-
7
-
-
84972506384
-
Global stability in diffusive delay Lotka-Volterra systems
-
Kuang Y., and Smith H.L. Global stability in diffusive delay Lotka-Volterra systems. Diff. Integral Eqs. 4 (1991) 117-128
-
(1991)
Diff. Integral Eqs.
, vol.4
, pp. 117-128
-
-
Kuang, Y.1
Smith, H.L.2
-
8
-
-
0001197579
-
Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks
-
Kuang Y., and Smith H.L. Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks. J. Austral. Math. Soc. Ser. B (1991)
-
(1991)
J. Austral. Math. Soc. Ser. B
-
-
Kuang, Y.1
Smith, H.L.2
-
9
-
-
44949279431
-
Harmless delays for uniform persistence
-
Wang W., and Ma Z. Harmless delays for uniform persistence. J. Math. Anal. Appl 158 (1991) 256C-268C
-
(1991)
J. Math. Anal. Appl
, vol.158
-
-
Wang, W.1
Ma, Z.2
-
12
-
-
84972506868
-
The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology
-
Yoshida K. The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12 (1982) 321-348
-
(1982)
Hiroshima Math. J.
, vol.12
, pp. 321-348
-
-
Yoshida, K.1
-
13
-
-
0036833143
-
Stability and Hopf bifurcation for a delay competition diffusion system
-
Zhou L., Tang Y., and Hussein S. Stability and Hopf bifurcation for a delay competition diffusion system. Chaos, Solitons and Fractals 14 (2002) 1201-1225
-
(2002)
Chaos, Solitons and Fractals
, vol.14
, pp. 1201-1225
-
-
Zhou, L.1
Tang, Y.2
Hussein, S.3
|