-
1
-
-
0034066575
-
What causes generate cycles in populations of stored-product moths?
-
C. J. Briggs, S. M. Sait, M. Begon, D. J. Thompson and H. C. J. Godfray, What causes generate cycles in populations of stored-product moths?, J. Animal Ecol., 69 (2000), 352-366.
-
(2000)
J. Animal Ecol.
, vol.69
, pp. 352-366
-
-
Briggs, C.J.1
Sait, S.M.2
Begon, M.3
Thompson, D.J.4
Godfray, H.C.J.5
-
3
-
-
0023519322
-
Stable demographiv limit cycles in laboratory populations of Tribolium castaneum
-
R. F. Costantino and L. Liu, Stable demographiv limit cycles in laboratory populations of Tribolium castaneum, J. Animal Ecol., 56 (1987), 885-906.
-
(1987)
J. Animal Ecol.
, vol.56
, pp. 885-906
-
-
Costantino, R.F.1
Liu, L.2
-
4
-
-
2942644881
-
Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems
-
M. Fan and Q. Wang, Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems, Discrete and Continuous Dynamical Systems Series B, 4 (2004), 563-574.
-
(2004)
Discrete and Continuous Dynamical Systems Series B
, vol.4
, pp. 563-574
-
-
Fan, M.1
Wang, Q.2
-
5
-
-
2942662269
-
Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays
-
R. Xu, M. A. J. Chaplain and F.A. Davidson, Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays, Discrete and Continuous Dynamical Systems Series B, 4 (2004), 823-831.
-
(2004)
Discrete and Continuous Dynamical Systems Series B
, vol.4
, pp. 823-831
-
-
Xu, R.1
Chaplain, M.A.J.2
Davidson, F.A.3
-
7
-
-
84974132697
-
On the global attractivity in a generalized delay-logistic differential equation
-
K. Gopalsamy, On the global attractivity in a generalized delay-logistic differential equation, Proc. Camb. Phil. Soc., 100 (1986), 183-192.
-
(1986)
Proc. Camb. Phil. Soc.
, vol.100
, pp. 183-192
-
-
Gopalsamy, K.1
-
10
-
-
0025132577
-
A time-delay model of single species growth with stage structure
-
W. G. Aiello and H. I. Freedman, A time-delay model of single species growth with stage structure, Math. Biosci., 101 (1990), 139-153.
-
(1990)
Math. Biosci.
, vol.101
, pp. 139-153
-
-
Aiello, W.G.1
Freedman, H.I.2
-
11
-
-
0001687872
-
Analysis of a model representing stage-structured population growth with state-dependent time delay
-
W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869.
-
(1992)
SIAM J. Appl. Math.
, vol.52
, pp. 855-869
-
-
Aiello, W.G.1
Freedman, H.I.2
Wu, J.3
-
12
-
-
0030318519
-
Analysis of an SEIRS epidemic model with two delays
-
K. L. Cooke, P. van den Drissche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.
-
(1996)
J. Math. Biol.
, vol.35
, pp. 240-260
-
-
Cooke, K.L.1
Van Den Drissche, P.2
-
13
-
-
0033209987
-
Interaction of maturation delay and nonlinear birth in population and epidemic models
-
K. L. Cooke, P. van den Drissche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352.
-
(1999)
J. Math. Biol.
, vol.39
, pp. 332-352
-
-
Cooke, K.L.1
Van Den Drissche, P.2
Zou, X.3
-
14
-
-
0029521324
-
Analysis of a delayed two-stage population model with space-limited recruitment
-
Y. Kuang and J. W.-H. So, Analysis of a delayed two-stage population model with space-limited recruitment, SIAM J. Appl. Math., 55 (1995), 1675-1696.
-
(1995)
SIAM J. Appl. Math.
, vol.55
, pp. 1675-1696
-
-
Kuang, Y.1
So, J.W.-H.2
-
15
-
-
0036373967
-
Geometric stability switch criteria in delay differential systems with delay dependant parameters
-
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependant parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
-
(2002)
SIAM J. Math. Anal.
, vol.33
, pp. 1144-1165
-
-
Beretta, E.1
Kuang, Y.2
-
16
-
-
15844390604
-
A stage structured predator-prey model and its dependence on maturation delay and death rate
-
in press
-
S. A. Gourley and Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate, J. Math. Biol., (in press)..
-
J. Math. Biol.
-
-
Gourley, S.A.1
Kuang, Y.2
-
17
-
-
7944239543
-
Effects of time delayed position feedback on a van der Pol-Doffing oscillator
-
J. Xu and K. W. Chung, Effects of time delayed position feedback on a van der Pol-Doffing oscillator, Physica D, 3096 (2003), 1-23.
-
(2003)
Physica D
, vol.3096
, pp. 1-23
-
-
Xu, J.1
Chung, K.W.2
-
19
-
-
0003687337
-
-
Springer-Verlag, New York
-
O. Dickmann, S. A. van Gils, S. M. V. Lunel and H-O. Walter, Delay equations: functional-, complex- and nonlinear analysis, Springer-Verlag, New York, 1993.
-
(1993)
Delay Equations: Functional-, Complex- and Nonlinear Analysis
-
-
Dickmann, O.1
Van Gils, S.A.2
Lunel, S.M.V.3
Walter, H.-O.4
-
21
-
-
0012278310
-
Hopf bifurcation calculations for functional differential equations
-
H. W. Stech, Hopf bifurcation calculations for functional differential equations, J. Math. Anal. Appl., 109 (1985), 472-91.
-
(1985)
J. Math. Anal. Appl.
, vol.109
, pp. 472-491
-
-
Stech, H.W.1
-
22
-
-
0018530613
-
The Hopf bifurcation: A stability result and application
-
H. W. Stech, The Hopf bifurcation: a stability result and application, J. Math. Anal. Appl., 71 (1979), 525-46.
-
(1979)
J. Math. Anal. Appl.
, vol.71
, pp. 525-546
-
-
Stech, H.W.1
-
23
-
-
0003478288
-
-
Springer-Verlag, New York
-
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamic Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
-
(1983)
Nonlinear Oscillations, Dynamic Systems, and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
|