메뉴 건너뛰기




Volumn 30, Issue 6, 2007, Pages 733-749

Global behaviour of an SIR epidemic model with time delay

Author keywords

Epidemic model; Equilibrium state; Global stability; Lyapunov functional; Stability in variance; Time delay

Indexed keywords

INTEGRAL EQUATIONS; INVARIANCE; LYAPUNOV FUNCTIONS; THEOREM PROVING; TIME DELAY;

EID: 33947105089     PISSN: 01704214     EISSN: 10991476     Source Type: Journal    
DOI: 10.1002/mma.810     Document Type: Article
Times cited : (49)

References (42)
  • 1
    • 33748131158 scopus 로고    scopus 로고
    • Epidemic threshold conditions for seasonally forced SEIR models
    • Ma J, Ma Z. Epidemic threshold conditions for seasonally forced SEIR models. Mathematical Biosciences and Engineering 2006; 3(1):161-172.
    • (2006) Mathematical Biosciences and Engineering , vol.3 , Issue.1 , pp. 161-172
    • Ma, J.1    Ma, Z.2
  • 3
    • 0043063689 scopus 로고
    • Stability analysis for a vector disease model
    • Cooke KL. Stability analysis for a vector disease model. Rocky Mountain Journal of Mathematics 1979; 7:253-263.
    • (1979) Rocky Mountain Journal of Mathematics , vol.7 , pp. 253-263
    • Cooke, K.L.1
  • 4
    • 33846872987 scopus 로고    scopus 로고
    • Nakaoka S, Saito Y. Takeuchi Y. Stability, delay, and chaotic behaviour in Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering 2006; 3(1):173-187.
    • Nakaoka S, Saito Y. Takeuchi Y. Stability, delay, and chaotic behaviour in Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering 2006; 3(1):173-187.
  • 5
    • 0009967980 scopus 로고
    • Vertically transmitted diseases
    • Springer: Berlin
    • Busenberg S, Cooke KL. Vertically transmitted diseases. Biomathematics, vol. 23. Springer: Berlin, 1993.
    • (1993) Biomathematics , vol.23
    • Busenberg, S.1    Cooke, K.L.2
  • 6
    • 0018819127 scopus 로고
    • Global asymptotic stability for a vector disease model with spatial spread
    • Marcati P, Pozio AM. Global asymptotic stability for a vector disease model with spatial spread. Journal of Mathematical Biology 1980; 9:179-187.
    • (1980) Journal of Mathematical Biology , vol.9 , pp. 179-187
    • Marcati, P.1    Pozio, A.M.2
  • 7
    • 0020408480 scopus 로고
    • Global asymptotic stability of a periodic solution to an epidemic model
    • Volz R. Global asymptotic stability of a periodic solution to an epidemic model. Journal of Mathematical Biology 1982; 15:319-338.
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 319-338
    • Volz, R.1
  • 8
    • 0029190838 scopus 로고
    • Global stability of an SIR epidemic model with time delays
    • Beretta E, Takeuchi Y. Global stability of an SIR epidemic model with time delays. Journal of Mathematical Biology 1995; 33(3):250-260.
    • (1995) Journal of Mathematical Biology , vol.33 , Issue.3 , pp. 250-260
    • Beretta, E.1    Takeuchi, Y.2
  • 9
    • 0036986139 scopus 로고    scopus 로고
    • Permanence of an SIR epidemic model with distributed time delays
    • Beretta E, Hara T, Ma W, Takeuchi Y. Permanence of an SIR epidemic model with distributed time delays. Tohoku Mathematics Journal 2002; 54(4):581-591.
    • (2002) Tohoku Mathematics Journal , vol.54 , Issue.4 , pp. 581-591
    • Beretta, E.1    Hara, T.2    Ma, W.3    Takeuchi, Y.4
  • 10
    • 0017228276 scopus 로고
    • Qualitative analysis of communicable disease model
    • Hethcote HW. Qualitative analysis of communicable disease model. Mathematical Biosciences 1976; 28: 335-356.
    • (1976) Mathematical Biosciences , vol.28 , pp. 335-356
    • Hethcote, H.W.1
  • 11
    • 0024197363 scopus 로고
    • Global stability results for a generalized Lotka-Volterra system with distributed delays
    • Beretta E, Capasso V, Rinaldi F. Global stability results for a generalized Lotka-Volterra system with distributed delays. Journal of Mathematical Biology 1988; 26:661-688.
    • (1988) Journal of Mathematical Biology , vol.26 , pp. 661-688
    • Beretta, E.1    Capasso, V.2    Rinaldi, F.3
  • 12
    • 33846868827 scopus 로고    scopus 로고
    • The stability of an SIR epidemic model with time delays
    • Jin Z, Ma Z. The stability of an SIR epidemic model with time delays. Mathematical Biosciences and Engineering 2006; 3(1): 101-109.
    • (2006) Mathematical Biosciences and Engineering , vol.3 , Issue.1 , pp. 101-109
    • Jin, Z.1    Ma, Z.2
  • 13
    • 33947188579 scopus 로고    scopus 로고
    • Brauer F, Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, 40. Springer: Berlin, 2000.
    • Brauer F, Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, vol. 40. Springer: Berlin, 2000.
  • 14
    • 0018656345 scopus 로고
    • Population biology of infectious diseases I
    • Anderson RM, May RM. Population biology of infectious diseases I. Nature 1979; 180:361-367.
    • (1979) Nature , vol.180 , pp. 361-367
    • Anderson, R.M.1    May, R.M.2
  • 16
    • 0036222772 scopus 로고    scopus 로고
    • Global dynamics of an SEIR epidemic model with vertical transmission
    • Li MY, Smith HL, Wang L. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics 2001; 62(1):58-69.
    • (2001) SIAM Journal on Applied Mathematics , vol.62 , Issue.1 , pp. 58-69
    • Li, M.Y.1    Smith, H.L.2    Wang, L.3
  • 18
    • 25644446425 scopus 로고
    • Some equations modelling growth processes and gonorrhea epidemics
    • Cooke KL, Yorke JA. Some equations modelling growth processes and gonorrhea epidemics. Mathematical Biosciences 1973; 16:75-101.
    • (1973) Mathematical Biosciences , vol.16 , pp. 75-101
    • Cooke, K.L.1    Yorke, J.A.2
  • 20
    • 0025041909 scopus 로고
    • Models for the spread of universally fatal diseases
    • Brauer F. Models for the spread of universally fatal diseases. Journal of Mathematical Biology 1990; 28(4): 451-462.
    • (1990) Journal of Mathematical Biology , vol.28 , Issue.4 , pp. 451-462
    • Brauer, F.1
  • 22
    • 33846859981 scopus 로고    scopus 로고
    • Differential susceptibility and infectivity epidemic models
    • Hyman J, Li J. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences and Engineering 2006; 3(1): 89-100.
    • (2006) Mathematical Biosciences and Engineering , vol.3 , Issue.1 , pp. 89-100
    • Hyman, J.1    Li, J.2
  • 27
    • 0003318955 scopus 로고
    • Mathematical Structure of Epidemic Systems
    • Springer: Berlin
    • Capasso V. Mathematical Structure of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer: Berlin, 1993.
    • (1993) Lecture Notes in Biomathematics , vol.97
    • Capasso, V.1
  • 28
    • 23844460516 scopus 로고    scopus 로고
    • Dynamics of a logistic population model with maturation delay and nonlinear birth rate
    • Ma S, Lu Q, Mei S. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems B 2005; 5(3):735-752.
    • (2005) Discrete and Continuous Dynamical Systems B , vol.5 , Issue.3 , pp. 735-752
    • Ma, S.1    Lu, Q.2    Mei, S.3
  • 29
    • 0021438024 scopus 로고
    • The dynamics of population models with distributed maturation periods
    • Blythe SP, Nisbet RM, Gurney WS. The dynamics of population models with distributed maturation periods. Theoretical Population Biology 1984; 25(3):289-311.
    • (1984) Theoretical Population Biology , vol.25 , Issue.3 , pp. 289-311
    • Blythe, S.P.1    Nisbet, R.M.2    Gurney, W.S.3
  • 32
    • 0001864149 scopus 로고
    • Qualitative properties of chemostat equations with time delays I: Boundedness, local and global asymptotic stability
    • Beretta E, Takeuchi Y. Qualitative properties of chemostat equations with time delays I: Boundedness, local and global asymptotic stability. Differential Equations and Dynamical Systems 1994; 2:19-40.
    • (1994) Differential Equations and Dynamical Systems , vol.2 , pp. 19-40
    • Beretta, E.1    Takeuchi, Y.2
  • 33
    • 0000128494 scopus 로고
    • Qualitative properties of chemostat equations with time delays II: Boundedness, local and global asymptotic stability
    • Beretta E, Takeuchi Y. Qualitative properties of chemostat equations with time delays II: Boundedness, local and global asymptotic stability. Differential Equations and Dynamical Systems 1994; 2:263-288.
    • (1994) Differential Equations and Dynamical Systems , vol.2 , pp. 263-288
    • Beretta, E.1    Takeuchi, Y.2
  • 34
    • 21244453589 scopus 로고    scopus 로고
    • Permanence of single-species stage-structured models
    • Kon R, Saito Y, Takeuchi Y. Permanence of single-species stage-structured models. Journal of Mathematical Biology 2004; 48(5):515-528.
    • (2004) Journal of Mathematical Biology , vol.48 , Issue.5 , pp. 515-528
    • Kon, R.1    Saito, Y.2    Takeuchi, Y.3
  • 35
    • 8144220445 scopus 로고    scopus 로고
    • Differential Equations and Dynamical Systems
    • Springer: Berlin
    • Perko L. Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7. Springer: Berlin, 2000.
    • (2000) Texts in Applied Mathematics , vol.7
    • Perko, L.1
  • 37
    • 33947171010 scopus 로고
    • A stability theorem for functional-differential equations
    • Hale J. A stability theorem for functional-differential equations. Proceedings of the New York Academy of Sciences 1963; 50:942-946.
    • (1963) Proceedings of the New York Academy of Sciences , vol.50 , pp. 942-946
    • Hale, J.1
  • 41
    • 9344236515 scopus 로고    scopus 로고
    • Global stability results of a susceptible-infective-immune-susceptible epidemic model
    • Tapaswi PK, Chattopadhyay J. Global stability results of a susceptible-infective-immune-susceptible epidemic model. Ecological Modelling 1996; 87:223-226.
    • (1996) Ecological Modelling , vol.87 , pp. 223-226
    • Tapaswi, P.K.1    Chattopadhyay, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.