-
1
-
-
33748131158
-
Epidemic threshold conditions for seasonally forced SEIR models
-
Ma J, Ma Z. Epidemic threshold conditions for seasonally forced SEIR models. Mathematical Biosciences and Engineering 2006; 3(1):161-172.
-
(2006)
Mathematical Biosciences and Engineering
, vol.3
, Issue.1
, pp. 161-172
-
-
Ma, J.1
Ma, Z.2
-
3
-
-
0043063689
-
Stability analysis for a vector disease model
-
Cooke KL. Stability analysis for a vector disease model. Rocky Mountain Journal of Mathematics 1979; 7:253-263.
-
(1979)
Rocky Mountain Journal of Mathematics
, vol.7
, pp. 253-263
-
-
Cooke, K.L.1
-
4
-
-
33846872987
-
-
Nakaoka S, Saito Y. Takeuchi Y. Stability, delay, and chaotic behaviour in Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering 2006; 3(1):173-187.
-
Nakaoka S, Saito Y. Takeuchi Y. Stability, delay, and chaotic behaviour in Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering 2006; 3(1):173-187.
-
-
-
-
5
-
-
0009967980
-
Vertically transmitted diseases
-
Springer: Berlin
-
Busenberg S, Cooke KL. Vertically transmitted diseases. Biomathematics, vol. 23. Springer: Berlin, 1993.
-
(1993)
Biomathematics
, vol.23
-
-
Busenberg, S.1
Cooke, K.L.2
-
6
-
-
0018819127
-
Global asymptotic stability for a vector disease model with spatial spread
-
Marcati P, Pozio AM. Global asymptotic stability for a vector disease model with spatial spread. Journal of Mathematical Biology 1980; 9:179-187.
-
(1980)
Journal of Mathematical Biology
, vol.9
, pp. 179-187
-
-
Marcati, P.1
Pozio, A.M.2
-
7
-
-
0020408480
-
Global asymptotic stability of a periodic solution to an epidemic model
-
Volz R. Global asymptotic stability of a periodic solution to an epidemic model. Journal of Mathematical Biology 1982; 15:319-338.
-
(1982)
Journal of Mathematical Biology
, vol.15
, pp. 319-338
-
-
Volz, R.1
-
8
-
-
0029190838
-
Global stability of an SIR epidemic model with time delays
-
Beretta E, Takeuchi Y. Global stability of an SIR epidemic model with time delays. Journal of Mathematical Biology 1995; 33(3):250-260.
-
(1995)
Journal of Mathematical Biology
, vol.33
, Issue.3
, pp. 250-260
-
-
Beretta, E.1
Takeuchi, Y.2
-
9
-
-
0036986139
-
Permanence of an SIR epidemic model with distributed time delays
-
Beretta E, Hara T, Ma W, Takeuchi Y. Permanence of an SIR epidemic model with distributed time delays. Tohoku Mathematics Journal 2002; 54(4):581-591.
-
(2002)
Tohoku Mathematics Journal
, vol.54
, Issue.4
, pp. 581-591
-
-
Beretta, E.1
Hara, T.2
Ma, W.3
Takeuchi, Y.4
-
10
-
-
0017228276
-
Qualitative analysis of communicable disease model
-
Hethcote HW. Qualitative analysis of communicable disease model. Mathematical Biosciences 1976; 28: 335-356.
-
(1976)
Mathematical Biosciences
, vol.28
, pp. 335-356
-
-
Hethcote, H.W.1
-
11
-
-
0024197363
-
Global stability results for a generalized Lotka-Volterra system with distributed delays
-
Beretta E, Capasso V, Rinaldi F. Global stability results for a generalized Lotka-Volterra system with distributed delays. Journal of Mathematical Biology 1988; 26:661-688.
-
(1988)
Journal of Mathematical Biology
, vol.26
, pp. 661-688
-
-
Beretta, E.1
Capasso, V.2
Rinaldi, F.3
-
12
-
-
33846868827
-
The stability of an SIR epidemic model with time delays
-
Jin Z, Ma Z. The stability of an SIR epidemic model with time delays. Mathematical Biosciences and Engineering 2006; 3(1): 101-109.
-
(2006)
Mathematical Biosciences and Engineering
, vol.3
, Issue.1
, pp. 101-109
-
-
Jin, Z.1
Ma, Z.2
-
13
-
-
33947188579
-
-
Brauer F, Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, 40. Springer: Berlin, 2000.
-
Brauer F, Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, vol. 40. Springer: Berlin, 2000.
-
-
-
-
14
-
-
0018656345
-
Population biology of infectious diseases I
-
Anderson RM, May RM. Population biology of infectious diseases I. Nature 1979; 180:361-367.
-
(1979)
Nature
, vol.180
, pp. 361-367
-
-
Anderson, R.M.1
May, R.M.2
-
16
-
-
0036222772
-
Global dynamics of an SEIR epidemic model with vertical transmission
-
Li MY, Smith HL, Wang L. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics 2001; 62(1):58-69.
-
(2001)
SIAM Journal on Applied Mathematics
, vol.62
, Issue.1
, pp. 58-69
-
-
Li, M.Y.1
Smith, H.L.2
Wang, L.3
-
18
-
-
25644446425
-
Some equations modelling growth processes and gonorrhea epidemics
-
Cooke KL, Yorke JA. Some equations modelling growth processes and gonorrhea epidemics. Mathematical Biosciences 1973; 16:75-101.
-
(1973)
Mathematical Biosciences
, vol.16
, pp. 75-101
-
-
Cooke, K.L.1
Yorke, J.A.2
-
20
-
-
0025041909
-
Models for the spread of universally fatal diseases
-
Brauer F. Models for the spread of universally fatal diseases. Journal of Mathematical Biology 1990; 28(4): 451-462.
-
(1990)
Journal of Mathematical Biology
, vol.28
, Issue.4
, pp. 451-462
-
-
Brauer, F.1
-
22
-
-
33846859981
-
Differential susceptibility and infectivity epidemic models
-
Hyman J, Li J. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences and Engineering 2006; 3(1): 89-100.
-
(2006)
Mathematical Biosciences and Engineering
, vol.3
, Issue.1
, pp. 89-100
-
-
Hyman, J.1
Li, J.2
-
27
-
-
0003318955
-
Mathematical Structure of Epidemic Systems
-
Springer: Berlin
-
Capasso V. Mathematical Structure of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer: Berlin, 1993.
-
(1993)
Lecture Notes in Biomathematics
, vol.97
-
-
Capasso, V.1
-
28
-
-
23844460516
-
Dynamics of a logistic population model with maturation delay and nonlinear birth rate
-
Ma S, Lu Q, Mei S. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems B 2005; 5(3):735-752.
-
(2005)
Discrete and Continuous Dynamical Systems B
, vol.5
, Issue.3
, pp. 735-752
-
-
Ma, S.1
Lu, Q.2
Mei, S.3
-
29
-
-
0021438024
-
The dynamics of population models with distributed maturation periods
-
Blythe SP, Nisbet RM, Gurney WS. The dynamics of population models with distributed maturation periods. Theoretical Population Biology 1984; 25(3):289-311.
-
(1984)
Theoretical Population Biology
, vol.25
, Issue.3
, pp. 289-311
-
-
Blythe, S.P.1
Nisbet, R.M.2
Gurney, W.S.3
-
32
-
-
0001864149
-
Qualitative properties of chemostat equations with time delays I: Boundedness, local and global asymptotic stability
-
Beretta E, Takeuchi Y. Qualitative properties of chemostat equations with time delays I: Boundedness, local and global asymptotic stability. Differential Equations and Dynamical Systems 1994; 2:19-40.
-
(1994)
Differential Equations and Dynamical Systems
, vol.2
, pp. 19-40
-
-
Beretta, E.1
Takeuchi, Y.2
-
33
-
-
0000128494
-
Qualitative properties of chemostat equations with time delays II: Boundedness, local and global asymptotic stability
-
Beretta E, Takeuchi Y. Qualitative properties of chemostat equations with time delays II: Boundedness, local and global asymptotic stability. Differential Equations and Dynamical Systems 1994; 2:263-288.
-
(1994)
Differential Equations and Dynamical Systems
, vol.2
, pp. 263-288
-
-
Beretta, E.1
Takeuchi, Y.2
-
35
-
-
8144220445
-
Differential Equations and Dynamical Systems
-
Springer: Berlin
-
Perko L. Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7. Springer: Berlin, 2000.
-
(2000)
Texts in Applied Mathematics
, vol.7
-
-
Perko, L.1
-
37
-
-
33947171010
-
A stability theorem for functional-differential equations
-
Hale J. A stability theorem for functional-differential equations. Proceedings of the New York Academy of Sciences 1963; 50:942-946.
-
(1963)
Proceedings of the New York Academy of Sciences
, vol.50
, pp. 942-946
-
-
Hale, J.1
-
41
-
-
9344236515
-
Global stability results of a susceptible-infective-immune-susceptible epidemic model
-
Tapaswi PK, Chattopadhyay J. Global stability results of a susceptible-infective-immune-susceptible epidemic model. Ecological Modelling 1996; 87:223-226.
-
(1996)
Ecological Modelling
, vol.87
, pp. 223-226
-
-
Tapaswi, P.K.1
Chattopadhyay, J.2
|