메뉴 건너뛰기




Volumn 25, Issue 16, 2004, Pages 1799-1809

Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm

Author keywords

EM algorithm; Finite mixture model; Model selection; Number of components; SSMEM algorithm

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; ITERATIVE METHODS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PROBLEM SOLVING; STATISTICAL METHODS;

EID: 8344256555     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2004.07.007     Document Type: Article
Times cited : (41)

References (30)
  • 1
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike, H., 1974. A new look at statistical model identification. IEEE Trans. Automat. Control 19, 716-723.
    • (1974) IEEE Trans. Automat. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0014060964 scopus 로고
    • A clustering technique for summarizing multivariate data
    • Ball, G.H., Hall, D.J., 1967. A clustering technique for summarizing multivariate data. Behav. Sci. 12, 153-155.
    • (1967) Behav. Sci. , vol.12 , pp. 153-155
    • Ball, G.H.1    Hall, D.J.2
  • 3
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • Barron, A., Rissanen, J., Yu, B., 1998. The minimum description length principle in coding and modeling. IEEE Trans. Inform. Theory 44 (6), 2743-2760.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 4
    • 8344273001 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated classification likelihood
    • Biernjacki, C., Celeux, G., Govaert, G., 2000. Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Trans. Pattern Anal. Machine Intell. 24 (3), 381-396, 22(7), 719-725.
    • (2000) IEEE Trans. Pattern Anal. Machine Intell. , vol.24 , Issue.3 , pp. 381-396
    • Biernjacki, C.1    Celeux, G.2    Govaert, G.3
  • 5
    • 0034228914 scopus 로고    scopus 로고
    • Biernjacki, C., Celeux, G., Govaert, G., 2000. Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Trans. Pattern Anal. Machine Intell. 24 (3), 381-396, 22(7), 719-725.
    • IEEE Trans. Pattern Anal. Machine Intell. , vol.22 , Issue.7 , pp. 719-725
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data using the EM algorithm
    • Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data using the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39, 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • Hansen, M.H., Yu, B., 2001. Model selection and the principle of minimum description length. J. Amer. Statist. Assoc. 96, 746-774.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 11
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin, C., 2000. Consistent estimation of the order of mixture models. Sankhya Ser. A 62, 49-66.
    • (2000) Sankhya Ser. A , vol.62 , pp. 49-66
    • Keribin, C.1
  • 12
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan, G.J., 1987. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Appl. Statist. 36, 318-324.
    • (1987) Appl. Statist. , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 16
    • 0037469113 scopus 로고    scopus 로고
    • Fitting of mixtures with, unspecified number of components using cross validation distance estimate
    • Miloslavsky, M., Laan, M., van der Laan, M.J., 2003. Fitting of mixtures with, unspecified number of components using cross validation distance estimate, Comput. Statist. Data Anal. 41, 413-428.
    • (2003) Comput. Statist. Data Anal. , vol.41 , pp. 413-428
    • Miloslavsky, M.1    Laan, M.2    Van Der Laan, M.J.3
  • 18
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson, S., Green, P.J., 1997. On Bayesian analysis of mixtures with an unknown number of components. J. Roy. Statist. Soc. Ser. B 59, 731-758.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 731-758
    • Richardson, S.1    Green, P.J.2
  • 19
    • 0037469111 scopus 로고    scopus 로고
    • Estimating the number of components in a finite mixture model: The special case of homogeneity
    • Schlattmann, P., 2003. Estimating the number of components in a finite mixture model: The special case of homogeneity. Comput. Statist. Data Anal. 41, 441-451.
    • (2003) Comput. Statist. Data Anal. , vol.41 , pp. 441-451
    • Schlattmann, P.1
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G., 1978. Estimating the dimension of a model. Ann. Statist. 6, 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 21
    • 0037469125 scopus 로고    scopus 로고
    • Weighted tests of homogeneity for tesing the number of components in a mixture
    • Susko, E., 2003. Weighted tests of homogeneity for tesing the number of components in a mixture. Comput. Statist. Data Anal. 41, 367-378.
    • (2003) Comput. Statist. Data Anal. , vol.41 , pp. 367-378
    • Susko, E.1
  • 23
    • 0028607656 scopus 로고
    • A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers
    • Ueda, N., Nakano, R., 1994. A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers. Neural Networks 7 (8), 1211-1227.
    • (1994) Neural Networks , vol.7 , Issue.8 , pp. 1211-1227
    • Ueda, N.1    Nakano, R.2
  • 24
    • 0034244838 scopus 로고    scopus 로고
    • Split and merge EM algorithm for improving Gaussian mixture density estimates
    • Ueda, N., Nakano, R., 2000a. Split and merge EM algorithm for improving Gaussian mixture density estimates. J. VLSI Signal Process. 26, 133-140.
    • (2000) J. VLSI Signal Process. , vol.26 , pp. 133-140
    • Ueda, N.1    Nakano, R.2
  • 27
    • 84950442225 scopus 로고
    • Information ratios for validating mixture analysis
    • Windham, M.P., Cutler, A., 1992. Information ratios for validating mixture analysis. J. Amer. Statist. Assoc. 87, 1188-1192.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 1188-1192
    • Windham, M.P.1    Cutler, A.2
  • 29
    • 0036501404 scopus 로고    scopus 로고
    • Mixture density estimation with group membership functions
    • Yang, X., Liu, J., 2002. Mixture density estimation with group membership functions. Pattern Recognition Lett. 23, 501-512.
    • (2002) Pattern Recognition Lett. , vol.23 , pp. 501-512
    • Yang, X.1    Liu, J.2
  • 30
    • 0038309400 scopus 로고    scopus 로고
    • EM algorithms for Gaussian mixtures with split-and-merge operation
    • Zhang, Z., Chen, C., Sun, J., Chan, K.L., 2003. EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognition 36, 1973-1983.
    • (2003) Pattern Recognition , vol.36 , pp. 1973-1983
    • Zhang, Z.1    Chen, C.2    Sun, J.3    Chan, K.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.