메뉴 건너뛰기




Volumn 41, Issue 3-4, 2003, Pages 413-428

Fitting of Mixtures with unspecified number of components cross validation distance estimate

Author keywords

Cross validation; Minimum distance; Mixtures; Normal mixtures

Indexed keywords

COMPUTER SIMULATION; MONTE CARLO METHODS; NUMBER THEORY; OPTIMIZATION;

EID: 0037469113     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-9473(02)00166-4     Document Type: Article
Times cited : (35)

References (33)
  • 1
    • 0002582140 scopus 로고
    • Estimation and hypothesis testing in finite mixture models
    • Aitkin, M., Rubin, D.B., 1985. Estimation and hypothesis testing in finite mixture models. J. Roy. Statist. Soc. Ser. B 47 (1), 67-75.
    • (1985) J. Roy. Statist. Soc. Ser. B , vol.47 , Issue.1 , pp. 67-75
    • Aitkin, M.1    Rubin, D.B.2
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Petrov, B.N., Csaki, F. (Eds.), Academiai Kiado, Budapest
    • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (Eds.), Second International Symposium on Information Theory. Academiai Kiado, Budapest, pp. 267-281.
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0033105385 scopus 로고    scopus 로고
    • An improvement on the nec criterion for assessing the number of clusters in a mixture model
    • Biernacki, C., Celeux, G., Govaert, G., 1999. An improvement on the nec criterion for assessing the number of clusters in a mixture model. Pattern Recognition Lett. 20, 267-272.
    • (1999) Pattern Recognition Lett. , vol.20 , pp. 267-272
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 5
    • 4244079934 scopus 로고    scopus 로고
    • Computer-assisted analysis of mixtures and applications: Meta-analysis
    • Chapman and Hall, London
    • Böhning, D., 1999. Computer-Assisted Analysis of Mixtures and Applications: Meta-Analysis, Disease Mapping and Others. Chapman & Hall, London.
    • (1999) Disease Mapping and Others
    • Böhning, D.1
  • 6
    • 0001730744 scopus 로고
    • The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family
    • Böhning, D., Dietz, E., Schaub, R., Schlattmann, P., Lindsay, B.G., 1994. The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Ann. Inst. Statist. Math. 46 (2), 373-388.
    • (1994) Ann. Inst. Statist. Math. , vol.46 , Issue.2 , pp. 373-388
    • Böhning, D.1    Dietz, E.2    Schaub, R.3    Schlattmann, P.4    Lindsay, B.G.5
  • 7
    • 0002356276 scopus 로고
    • Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-fisher information matrix
    • Opitz, O., Lausen, B., Klar, R. (Eds.), Springer, Heidelberg
    • Bozdogan, H., 1993. Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-fisher information matrix. In: Opitz, O., Lausen, B., Klar, R. (Eds.), Information and Classification. Springer, Heidelberg, pp. 40-54.
    • (1993) Information and Classification , pp. 40-54
    • Bozdogan,, H.1
  • 8
    • 0002996131 scopus 로고    scopus 로고
    • Akaike's information criterion and recent developments in information complexity
    • Bozdogan, H., 2000. Akaike's information criterion and recent developments in information complexity. J. Math. Psych. 44, 62-91.
    • (2000) J. Math. Psych. , vol.44 , pp. 62-91
    • Bozdogan, H.1
  • 9
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux, G., Soromenho, G., 1996. An entropy criterion for assessing the number of clusters in a mixture model. J. Classification 13, 195-212.
    • (1996) J. Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 10
    • 0030304448 scopus 로고    scopus 로고
    • Penalised minimum distance estimates in finite mixture models
    • Chen, J., Kalbfleisch, J.D., 1996. Penalised minimum distance estimates in finite mixture models. Canadian J. Statist. 24, 167-175.
    • (1996) Canadian J. Statist. , vol.24 , pp. 167-175
    • Chen, J.1    Kalbfleisch, J.D.2
  • 13
    • 0000222760 scopus 로고
    • Statistical inference using maximum likelihood estimation and the generalized likelihood ratio when the true parameter is on the boundary of the parameter space
    • Feng, Z., McCulloch, C.E., 1992. Statistical inference using maximum likelihood estimation and the generalized likelihood ratio when the true parameter is on the boundary of the parameter space. Statist. Probab. Lett. 13, 325-332.
    • (1992) Statist. Probab. Lett. , vol.13 , pp. 325-332
    • Feng, Z.1    McCulloch, C.E.2
  • 14
    • 0028659217 scopus 로고
    • On the likelihood ratio test statistic for the number of components in a normal mixture with unequal variances
    • Feng, Z., McCulloch, C.E., 1994. On the likelihood ratio test statistic for the number of components in a normal mixture with unequal variances. Biometrics 50, 1158-1162.
    • (1994) Biometrics , vol.50 , pp. 1158-1162
    • Feng, Z.1    McCulloch, C.E.2
  • 15
    • 0000452356 scopus 로고    scopus 로고
    • Using bootstrap likelihood ratios in finite mixture models
    • Feng, Z., McCulloch, C.E., 1996. Using bootstrap likelihood ratios in finite mixture models. J. Roy. Statist. Soc. Ser. B 58 (3), 609-617.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , Issue.3 , pp. 609-617
    • Feng, Z.1    McCulloch, C.E.2
  • 16
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? which clustering method? answers via model-based cluster analysis
    • Fraley, C., Raftery, A.E., 1998. How many clusters? which clustering method? answers via model-based cluster analysis. Comput. J. 41 (8), 578-588.
    • (1998) Comput. J. , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 17
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • Hansen, M.H., Yu, B., 2001. Model selection and the principle of minimum description length. J. Amer. Statist. Assoc. 96, 746-774.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 18
    • 51249174278 scopus 로고
    • On estimating of the number of constituents of a finite mixture of continuous distributions
    • Henna, J., 1985. On estimating of the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37 (2), 235-240.
    • (1985) Ann. Inst. Statist. Math. , vol.37 , Issue.2 , pp. 235-240
    • Henna, J.1
  • 20
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin, C., 2000. Consistent estimation of the order of mixture models. Sankhya Ser. A 62, 49-66.
    • (2000) Sankhya Ser. A , vol.62 , pp. 49-66
    • Keribin, C.1
  • 21
    • 0003286354 scopus 로고
    • Mixture models: Theory, geometry, and applications
    • Institute of Mathematical Statistics and the American Statistical Association. Hayward, CA
    • Lindsay, B.G., 1995. Mixture Models: Theory, Geometry, and Applications. Vol. 5, Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics and the American Statistical Association. Hayward, CA.
    • (1995) Regional Conference Series in Probability and Statistics , vol.5
    • Lindsay, B.G.1
  • 22
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan, G.J., 1987. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Appl. Statist. 36 (3), 318-324.
    • (1987) Appl. Statist. , vol.36 , Issue.3 , pp. 318-324
    • McLachlan, G.J.1
  • 23
    • 0003336439 scopus 로고
    • Mixture models: Inference and applications to clustering
    • Marcel Dekker, New York
    • McLachlan, G.J., Basford, K.E., 1988. Mixture Models: Inference and Applications to Clustering. . Statistics, Textbooks and Monographs, Vol. 84. Marcel Dekker, New York.
    • (1988) Statistics, Textbooks and Monographs , vol.84
    • McLachlan, G.J.1    Basford, K.E.2
  • 24
    • 0012386026 scopus 로고    scopus 로고
    • On a resampling approach to choosing the number of components in normal mixture models
    • Billard, L., Fisher, N.I. (Eds.), Sydney, Australia, Fairfax Station, VA, Interface Foundation of North America
    • McLachlan, G.J., Peel, D., 1997. On a resampling approach to choosing the number of components in normal mixture models. In: Billard, L., Fisher, N.I. (Eds.), Computing Science and Statistics: Graph-Image-Vision: Proceedings of the 28th Symposium on the Interface, Sydney, Australia, Vol. 28, Fairfax Station, VA, pp. 260-266, Interface Foundation of North America.
    • (1997) Computing Science and Statistics: Graph- Image-Vision: Proceedings of the 28th Symposium on the Interface , vol.28 , pp. 260-266
    • McLachlan, G.J.1    Peel, D.2
  • 25
    • 0004066260 scopus 로고    scopus 로고
    • Wiley series in probability and statistics, Wiley, New York
    • McLachlan, G., Peel, D., 2000. Finite Mixture Models. Wiley series in probability and statistics. Wiley, New York.
    • (2000) Finite Mixture Models
    • McLachlan, G.1    Peel, D.2
  • 26
    • 0026050948 scopus 로고
    • The likelihood ratio test for the two-component normal mixture problem: Power and sample size analysis
    • Mendell, N.R., Thode Jr., H.C., Finch, S.J., 1991. The likelihood ratio test for the two-component normal mixture problem: power and sample size analysis Biometrics 47, 1143-1148.
    • (1991) Biometrics , vol.47 , pp. 1143-1148
    • Mendell, N.R.1    Thode H.C., Jr.2    Finch, S.J.3
  • 27
    • 0035973252 scopus 로고    scopus 로고
    • Estimating probability of non-response to treatment using mixture distributions
    • Pavlic, M., Brand, R., Cummings, S.M., 2001. Estimating probability of non-response to treatment using mixture distributions. Statist. Med. 20 (12), 1739-1753.
    • (2001) Statist. Med. , vol.20 , Issue.12 , pp. 1739-1753
    • Pavlic, M.1    Brand, R.2    Cummings, S.M.3
  • 28
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson, S., Green, P.J., 1997. On Bayesian analysis of mixtures with an unknown number of components. J. Roy. Statist. Soc. Ser. B 59 (4), 731-758.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , Issue.4 , pp. 731-758
    • Richardson, S.1    Green, P.J.2
  • 29
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • Smyth, P., 2000. Model selection for probabilistic clustering using cross-validated likelihood. Statist. Comput. 10 (1), 63-72.
    • (2000) Statist. Comput. , vol.10 , Issue.1 , pp. 63-72
    • Smyth, P.1
  • 31
    • 84950442225 scopus 로고
    • Information ratios for validating mixture analyses
    • Windham, M.P., Cutler, A., 1992. Information ratios for validating mixture analyses. J. Amer. Statist. Assoc. Theory Methods 87 (420), 1188-1192.
    • (1992) J. Amer. Statist. Assoc. Theory Methods , vol.87 , Issue.420 , pp. 1188-1192
    • Windham, M.P.1    Cutler, A.2
  • 33
    • 0038822980 scopus 로고
    • A Monte Carlo study of the sampling distribution of the likelihood ratio for mixtures of multinomial distributions
    • US Naval Personnel and Training Research Laboratory, San Diego
    • Wolfe, J.H., 1971. A Monte Carlo study of the sampling distribution of the likelihood ratio for mixtures of multinomial distributions. Technical bulletin stb 72-2. US Naval Personnel and Training Research Laboratory, San Diego.
    • (1971) Technical Bulletin Stb 72-2
    • Wolfe, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.