-
1
-
-
26244461684
-
Clustering with Bregman divergence
-
A. Banerjee, S. Merugu, I.S.Dhillon, and J.Ghosh. Clustering with Bregman divergence. Journal of Machine Learning Research, 6:1705-1749, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1705-1749
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.S.3
Ghosh, J.4
-
2
-
-
70350700681
-
New ensemble methods for evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble methods for evolving data streams. In KDD '09, pages 139-148, 2009.
-
(2009)
KDD '09
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavaldà, R.5
-
3
-
-
34547625023
-
Eigen-trend: Trend analysis in the blogosphere based on singular value decomposition
-
Y. Chi, B. Tseng, and J. Tatemura. Eigen-trend: trend analysis in the blogosphere based on singular value decomposition. In CIKM, pages 68-77, 2006.
-
(2006)
CIKM
, pp. 68-77
-
-
Chi, Y.1
Tseng, B.2
Tatemura, J.3
-
4
-
-
67049146331
-
Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding
-
C. Ding, T. Li, and M. Jordan. Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding. In ICDM, pages 183-192, 2008.
-
(2008)
ICDM
, pp. 183-192
-
-
Ding, C.1
Li, T.2
Jordan, M.3
-
6
-
-
49149121323
-
Joint cluster analysis of attribute data and relationship data: The connected k-center problem algorithms and applications
-
R. Ge, M. Ester, B. Gao, Z. Hu, B. Bhattacharya, and B. Ben-Moshe. Joint cluster analysis of attribute data and relationship data: The connected k-center problem algorithms and applications. Trans. on Knowledge discovery from Data, 2:1-35, 2008.
-
(2008)
Trans. on Knowledge Discovery from Data
, vol.2
, pp. 1-35
-
-
Ge, R.1
Ester, M.2
Gao, B.3
Hu, Z.4
Bhattacharya, B.5
Ben-Moshe, B.6
-
7
-
-
0004236492
-
-
The Johns Hopkins University Press, Baltimore and London
-
G. H. Golub and C. F. V. Loan. Matrix computation. The Johns Hopkins University Press, Baltimore and London, 1996.
-
(1996)
Matrix Computation
-
-
Golub, G.H.1
Loan, C.F.V.2
-
9
-
-
77956211453
-
Topic dynamics: An alternative model of 'bursts' in streams of topics
-
D. He and D.Parker. Topic dynamics: An alternative model of 'bursts' in streams of topics. In KDD, pages 443-452, 2010.
-
(2010)
KDD
, pp. 443-452
-
-
He, D.1
Parker, D.2
-
10
-
-
44649190568
-
Unsupervised change analysis using supervised learning
-
DOI 10.1007/978-3-540-68125-0-15, Advances in Knowledge Discovery and Data Mining - 12th Pacific-Asia Conference, PAKDD 2008, Proceedings
-
S. Hido, T. Ide, H. Kashima, H. Kubo, and H. Matsuzawa. Unsupervised change analysis using supervised learning. In Advances in Knowledge Discovery and Data Mining, pages 148-159. Springer Berlin / Heidelberg, 2008. (Pubitemid 351776314)
-
(2008)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.5012 LNAI
, pp. 148-159
-
-
Hido, S.1
Ide, T.2
Kashima, H.3
Kubo, H.4
Matsuzawa, H.5
-
11
-
-
0035789299
-
Mining time-changing data streams
-
G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In KDD, pages 97-106, 2001.
-
(2001)
KDD
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
12
-
-
85123650840
-
Detecting change in data streams
-
D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In VLDB, pages 180-191, 2004.
-
(2004)
VLDB
, pp. 180-191
-
-
Kifer, D.1
Ben-David, S.2
Gehrke, J.3
-
13
-
-
84883713774
-
Learning drifting concepts: Example selection vs. example weighting
-
R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis, 8(3):697-717, 2004.
-
(2004)
Intelligent Data Analysis
, vol.8
, Issue.3
, pp. 697-717
-
-
Klinkenberg, R.1
-
14
-
-
83055184583
-
-
K. Lang. http://people.csail.mit.edu/jrennie/20newsgroups/.
-
-
-
Lang, K.1
-
15
-
-
74549115891
-
Event detection from flickr data through wavelet-based spatial analysis
-
L.Chen and A.Roy. Event detection from flickr data through wavelet-based spatial analysis. In CIKM, pages 523-532, 2009.
-
(2009)
CIKM
, pp. 523-532
-
-
Chen, L.1
Roy, A.2
-
16
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.1
Seung, H.2
-
17
-
-
0001093042
-
Algorithms for non-negative matrix factorization
-
D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556-562, 2000.
-
(2000)
NIPS
, pp. 556-562
-
-
Lee, D.1
Seung, H.2
-
18
-
-
32344445368
-
Co-clustering by block value decomposition
-
B. Long, Z. Zhang, and P. Yu. Co-clustering by block value decomposition. In KDD, 2005.
-
(2005)
KDD
-
-
Long, B.1
Zhang, Z.2
Yu, P.3
-
19
-
-
33749541707
-
Unsupervised learning on k-partite graphs
-
B. Long, Z. Zhang, and P. Yu. Unsupervised learning on k-partite graphs. In KDD, pages 317-326, 2006.
-
(2006)
KDD
, pp. 317-326
-
-
Long, B.1
Zhang, Z.2
Yu, P.3
-
21
-
-
38149140915
-
Detecting concept drift using statistical testing
-
Berlin, Heidelberg, Springer-Verlag
-
K. Nishida and K. Yamauchi. Detecting concept drift using statistical testing. In Proceedings of the 10th international conference on Discovery science, DS'07, pages 264-269, Berlin, Heidelberg, 2007. Springer-Verlag.
-
(2007)
Proceedings of the 10th International Conference on Discovery Science, DS'07
, pp. 264-269
-
-
Nishida, K.1
Yamauchi, K.2
-
24
-
-
78349293352
-
A unified view of matrix factorization models
-
A. P. Singh and G. Gordon. A unified view of matrix factorization models. In ECML PKDD, 2008.
-
(2008)
ECML PKDD
-
-
Singh, A.P.1
Gordon, G.2
-
25
-
-
36849057643
-
Statistical change detection for multi-dimensional data
-
X. Song, M. Wu, C. Jermaine, and S. Ranka. Statistical change detection for multi-dimensional data. In KDD, 2007.
-
(2007)
KDD
-
-
Song, X.1
Wu, M.2
Jermaine, C.3
Ranka, S.4
-
27
-
-
70350600645
-
Streamkrimp: Detecting change in data streams
-
M. van Leeuwen and A. Siebes. Streamkrimp: Detecting change in data streams. In ECML, 2008.
-
(2008)
ECML
-
-
Van Leeuwen, M.1
Siebes, A.2
-
29
-
-
83055176816
-
Characterising the difference
-
J. Vreeken, M. Leeuwen, and A. Siebes. Characterising the difference. In KDD '07, pages 226-235, 2007.
-
(2007)
KDD '07
, pp. 226-235
-
-
Vreeken, J.1
Leeuwen, M.2
Siebes, A.3
-
30
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In KDD '03, pages 226-235, 2003.
-
(2003)
KDD '03
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
31
-
-
65449158881
-
Categorizing and mining concept drifting data streams
-
P. Zhang, X. Zhu, and Y. Shi. Categorizing and mining concept drifting data streams. In KDD '08, pages 812-820, 2008.
-
(2008)
KDD '08
, pp. 812-820
-
-
Zhang, P.1
Zhu, X.2
Shi, Y.3
|