메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1097-1106

Pattern change discovery between high dimensional data sets

Author keywords

matrix factorization; pattern change detection; principal angles; principle of dominant subspace mapping; unsupervised learning

Indexed keywords

CHANGE DETECTION; DATA SETS; DOMINANT SUBSPACE; HIGH DIMENSIONAL DATA; LIKELIHOOD RATIO TESTS; MATRIX FACTORIZATIONS; PATTERN CHANGE; PRINCIPAL ANGLES; REAL-WORLD APPLICATION; STATISTICAL FRAMEWORK; STATISTICAL SIGNIFICANCE;

EID: 83055186957     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063735     Document Type: Conference Paper
Times cited : (4)

References (31)
  • 3
    • 34547625023 scopus 로고    scopus 로고
    • Eigen-trend: Trend analysis in the blogosphere based on singular value decomposition
    • Y. Chi, B. Tseng, and J. Tatemura. Eigen-trend: trend analysis in the blogosphere based on singular value decomposition. In CIKM, pages 68-77, 2006.
    • (2006) CIKM , pp. 68-77
    • Chi, Y.1    Tseng, B.2    Tatemura, J.3
  • 4
    • 67049146331 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding
    • C. Ding, T. Li, and M. Jordan. Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding. In ICDM, pages 183-192, 2008.
    • (2008) ICDM , pp. 183-192
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 6
    • 49149121323 scopus 로고    scopus 로고
    • Joint cluster analysis of attribute data and relationship data: The connected k-center problem algorithms and applications
    • R. Ge, M. Ester, B. Gao, Z. Hu, B. Bhattacharya, and B. Ben-Moshe. Joint cluster analysis of attribute data and relationship data: The connected k-center problem algorithms and applications. Trans. on Knowledge discovery from Data, 2:1-35, 2008.
    • (2008) Trans. on Knowledge Discovery from Data , vol.2 , pp. 1-35
    • Ge, R.1    Ester, M.2    Gao, B.3    Hu, Z.4    Bhattacharya, B.5    Ben-Moshe, B.6
  • 7
    • 0004236492 scopus 로고    scopus 로고
    • The Johns Hopkins University Press, Baltimore and London
    • G. H. Golub and C. F. V. Loan. Matrix computation. The Johns Hopkins University Press, Baltimore and London, 1996.
    • (1996) Matrix Computation
    • Golub, G.H.1    Loan, C.F.V.2
  • 9
    • 77956211453 scopus 로고    scopus 로고
    • Topic dynamics: An alternative model of 'bursts' in streams of topics
    • D. He and D.Parker. Topic dynamics: An alternative model of 'bursts' in streams of topics. In KDD, pages 443-452, 2010.
    • (2010) KDD , pp. 443-452
    • He, D.1    Parker, D.2
  • 11
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In KDD, pages 97-106, 2001.
    • (2001) KDD , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 12
    • 85123650840 scopus 로고    scopus 로고
    • Detecting change in data streams
    • D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In VLDB, pages 180-191, 2004.
    • (2004) VLDB , pp. 180-191
    • Kifer, D.1    Ben-David, S.2    Gehrke, J.3
  • 13
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis, 8(3):697-717, 2004.
    • (2004) Intelligent Data Analysis , vol.8 , Issue.3 , pp. 697-717
    • Klinkenberg, R.1
  • 14
    • 83055184583 scopus 로고    scopus 로고
    • K. Lang. http://people.csail.mit.edu/jrennie/20newsgroups/.
    • Lang, K.1
  • 15
    • 74549115891 scopus 로고    scopus 로고
    • Event detection from flickr data through wavelet-based spatial analysis
    • L.Chen and A.Roy. Event detection from flickr data through wavelet-based spatial analysis. In CIKM, pages 523-532, 2009.
    • (2009) CIKM , pp. 523-532
    • Chen, L.1    Roy, A.2
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 17
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556-562, 2000.
    • (2000) NIPS , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 18
    • 32344445368 scopus 로고    scopus 로고
    • Co-clustering by block value decomposition
    • B. Long, Z. Zhang, and P. Yu. Co-clustering by block value decomposition. In KDD, 2005.
    • (2005) KDD
    • Long, B.1    Zhang, Z.2    Yu, P.3
  • 19
    • 33749541707 scopus 로고    scopus 로고
    • Unsupervised learning on k-partite graphs
    • B. Long, Z. Zhang, and P. Yu. Unsupervised learning on k-partite graphs. In KDD, pages 317-326, 2006.
    • (2006) KDD , pp. 317-326
    • Long, B.1    Zhang, Z.2    Yu, P.3
  • 22
    • 77952052146 scopus 로고    scopus 로고
    • Event discovery in time series
    • D. Preston, P. Protopapas, and C. Brodley. Event discovery in time series. In SDM, pages 61-72, 2009.
    • (2009) SDM , pp. 61-72
    • Preston, D.1    Protopapas, P.2    Brodley, C.3
  • 24
    • 78349293352 scopus 로고    scopus 로고
    • A unified view of matrix factorization models
    • A. P. Singh and G. Gordon. A unified view of matrix factorization models. In ECML PKDD, 2008.
    • (2008) ECML PKDD
    • Singh, A.P.1    Gordon, G.2
  • 25
    • 36849057643 scopus 로고    scopus 로고
    • Statistical change detection for multi-dimensional data
    • X. Song, M. Wu, C. Jermaine, and S. Ranka. Statistical change detection for multi-dimensional data. In KDD, 2007.
    • (2007) KDD
    • Song, X.1    Wu, M.2    Jermaine, C.3    Ranka, S.4
  • 27
    • 70350600645 scopus 로고    scopus 로고
    • Streamkrimp: Detecting change in data streams
    • M. van Leeuwen and A. Siebes. Streamkrimp: Detecting change in data streams. In ECML, 2008.
    • (2008) ECML
    • Van Leeuwen, M.1    Siebes, A.2
  • 29
    • 83055176816 scopus 로고    scopus 로고
    • Characterising the difference
    • J. Vreeken, M. Leeuwen, and A. Siebes. Characterising the difference. In KDD '07, pages 226-235, 2007.
    • (2007) KDD '07 , pp. 226-235
    • Vreeken, J.1    Leeuwen, M.2    Siebes, A.3
  • 30
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In KDD '03, pages 226-235, 2003.
    • (2003) KDD '03 , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 31
    • 65449158881 scopus 로고    scopus 로고
    • Categorizing and mining concept drifting data streams
    • P. Zhang, X. Zhu, and Y. Shi. Categorizing and mining concept drifting data streams. In KDD '08, pages 812-820, 2008.
    • (2008) KDD '08 , pp. 812-820
    • Zhang, P.1    Zhu, X.2    Shi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.