메뉴 건너뛰기




Volumn , Issue , 2011, Pages 115-123

Improving context-aware query classification via adaptive self-training

Author keywords

query classification; unlabeled queries; user search context

Indexed keywords

CLASSIFICATION ACCURACY; CONDITIONAL RANDOM FIELD; CONTEXT-AWARE; DISCRIMINATIVE TRAINING; MODEL SELECTION; QUERY CLASSIFICATION; QUERY TERMS; SEARCH LOGS; SELF-TRAINING; UNLABELED QUERIES; USER QUERY; USER SEARCH CONTEXT; WEB SEARCH SYSTEM;

EID: 83055168261     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063598     Document Type: Conference Paper
Times cited : (5)

References (32)
  • 2
    • 9444289383 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs. Learning theory, pages 624-638, 2004.
    • (2004) Learning Theory , pp. 624-638
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 3
    • 0011789931 scopus 로고    scopus 로고
    • (revision 1.9). Mathematics and Computer Science Division, Argonne National Laboratory, Tech. Rep. ANL/MCS-TM-242
    • S. Benson, L. McInnes, J. Moré, and J. Sarich. TAO user manual (revision 1.9). Mathematics and Computer Science Division, Argonne National Laboratory, Tech. Rep. ANL/MCS-TM-242, 2005.
    • (2005) TAO User Manual
    • Benson, S.1    McInnes, L.2    Moré, J.3    Sarich, J.4
  • 4
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proc. COLT, pages 92-100, 1998.
    • (1998) Proc. COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. Burges. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2):121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0029290136 scopus 로고
    • Characterizing browsing strategies in the World-Wide Web
    • L. Catledge and J. Pitkow. Characterizing browsing strategies in the World-Wide Web. Computer Networks and ISDN systems, 27(6):1065-1073, 1995.
    • (1995) Computer Networks and ISDN Systems , vol.27 , Issue.6 , pp. 1065-1073
    • Catledge, L.1    Pitkow, J.2
  • 9
    • 77949510876 scopus 로고    scopus 로고
    • Gradient-Based Feature Selection for Conditional Random Fields and Its Applications in Computational Genetics
    • M. Chen, C. Y., M. Brent, and A. Tenney. Gradient-Based Feature Selection for Conditional Random Fields and Its Applications in Computational Genetics. In Proc. ICTAI, pages 750-757, 2009.
    • (2009) Proc. ICTAI , pp. 750-757
    • Chen, M.1    Y, C.2    Brent, M.3    Tenney, A.4
  • 10
    • 0021512606 scopus 로고
    • The role of context and adaptation in user interfaces
    • B. Croft et al. The role of context and adaptation in user interfaces. Journal of Man-Machine Studies, 21(4):283-292, 1984.
    • (1984) Journal of Man-Machine Studies , vol.21 , Issue.4 , pp. 283-292
    • Croft, B.1
  • 11
    • 67650033440 scopus 로고    scopus 로고
    • Probabilistic query expansion using query logs
    • H. Cui, J. Wen, J. Nie, and W. Ma. Probabilistic query expansion using query logs. In Proc. WWW, pages 325-332, 2002.
    • (2002) Proc. WWW , pp. 325-332
    • Cui, H.1    Wen, J.2    Nie, J.3    Ma, W.4
  • 12
    • 84858385957 scopus 로고    scopus 로고
    • Softmax-margin crfs: Training log-linear models with cost functions
    • K. Gimpel and N. Smith. Softmax-margin crfs: Training log-linear models with cost functions. In Proc. ACL, pages 733-736, 2010.
    • (2010) Proc. ACL , pp. 733-736
    • Gimpel, K.1    Smith, N.2
  • 13
    • 0039386279 scopus 로고    scopus 로고
    • Context learning in Okapi
    • A. Goker. Context learning in Okapi. Journal of Documentation, 53(1):80-83, 1997. (Pubitemid 127372677)
    • (1997) Journal of Documentation , vol.53 , Issue.1 , pp. 80-83
    • Goker, A.1
  • 15
    • 84860537772 scopus 로고    scopus 로고
    • Semi-supervised conditional random fields for improved sequence segmentation and labeling
    • F. Jiao, S. Wang, C. Lee, R. Greiner, and D. Schuurmans. Semi-supervised conditional random fields for improved sequence segmentation and labeling. In Proc. ACL, pages 209-216, 2006.
    • (2006) Proc. ACL , pp. 209-216
    • Jiao, F.1    Wang, S.2    Lee, C.3    Greiner, R.4    Schuurmans, D.5
  • 16
    • 78650848811 scopus 로고    scopus 로고
    • Learning to classify text using support vector machines: Methods, theory, and algorithms
    • T. Joachims. Learning to classify text using support vector machines: Methods, theory, and algorithms. Computational Linguistics, 29(4):656-664, 2002.
    • (2002) Computational Linguistics , vol.29 , Issue.4 , pp. 656-664
    • Joachims, T.1
  • 17
    • 67650044839 scopus 로고    scopus 로고
    • Beyond the session timeout: Automatic hierarchical segmentation of search topics in query logs
    • R. Jones and K. Klinkner. Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. In Proc. CIKM, pages 699-708, 2008.
    • (2008) Proc. CIKM , pp. 699-708
    • Jones, R.1    Klinkner, K.2
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML, pages 282-289, 2001.
    • (2001) Proc. ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 19
    • 57549108344 scopus 로고    scopus 로고
    • Learning query intent from regularized click graphs
    • X. Li, Y. Wang, and A. Acero. Learning query intent from regularized click graphs. In Proc. SIGIR, pages 339-346, 2008.
    • (2008) Proc. SIGIR , pp. 339-346
    • Li, X.1    Wang, Y.2    Acero, A.3
  • 20
    • 34547978786 scopus 로고    scopus 로고
    • Simple, robust, scalable semi-supervised learning via expectation regularization
    • ACM
    • G. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In Proc. ICML, pages 593-600. ACM, 2007.
    • (2007) Proc. ICML , pp. 593-600
    • Mann, G.1    McCallum, A.2
  • 21
    • 0028375569 scopus 로고    scopus 로고
    • List Viterbi decoding algorithms with applications. Communications
    • N. Seshadri and C. Sundberg. List Viterbi decoding algorithms with applications. Communications, IEEE Transactions on, 42(234):313-323, 2002.
    • (2002) IEEE Transactions on , vol.42 , Issue.234 , pp. 313-323
    • Seshadri, N.1    Sundberg, C.2
  • 23
    • 84864038630 scopus 로고    scopus 로고
    • Large margin hidden Markov models for automatic speech recognition
    • F. Sha and L. Saul. Large margin hidden Markov models for automatic speech recognition. In Proc. NIPS, pages 1249-1256, 2007.
    • (2007) Proc. NIPS , pp. 1249-1256
    • Sha, F.1    Saul, L.2
  • 24
  • 26
    • 0033225155 scopus 로고    scopus 로고
    • Production of 'context' in information seeking research: A metatheoretical view
    • DOI 10.1016/S0306-4573(99)00024-2
    • S. Talja, H. Keso, and T. Pietiläinen. The production of 'context' in information seeking research: a metatheoretical view. Information Processing and Management, 35(6):751-763, 1999. (Pubitemid 30509550)
    • (1999) Information Processing and Management , vol.35 , Issue.6 , pp. 751-763
    • Talja, S.1    Keso, H.2    Pietilainen, T.3
  • 28
    • 29344450414 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In Proc. ICML, page 104, 2004.
    • (2004) Proc. ICML , pp. 104
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 30
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In Proc. ACL, pages 189-196, 1995.
    • (1995) Proc. ACL , pp. 189-196
    • Yarowsky, D.1
  • 31
    • 0005004572 scopus 로고    scopus 로고
    • A probability analysis on the value of unlabeled data for classification problems
    • T. Zhang and F. Oles. A probability analysis on the value of unlabeled data for classification problems. In Proc. ICML, pages 1191-1198, 2000.
    • (2000) Proc. ICML , pp. 1191-1198
    • Zhang, T.1    Oles, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.