메뉴 건너뛰기




Volumn 38, Issue 1, 2012, Pages 43-51

Hydraulic head interpolation using anfis-model selection and sensitivity analysis

Author keywords

Anfis; Hydraulic head; Hydrogeology; Sensitivity analysis; Spatial interpolation

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; AGRICULTURAL WATERSHEDS; ANFIS; ANFIS MODEL; BEST MODEL; CARTESIAN COORDINATE; DATA SETS; ERROR CELLS; ERROR PROPAGATION; GAUSSIANS; HYDRAULIC HEAD; HYDRAULIC HEADS; INPUT NODE; PERFORMANCE CRITERION; SELECTION METHODS; SENSIBILITY ANALYSIS; SPATIAL INTERPOLATION;

EID: 82455208909     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2011.04.019     Document Type: Article
Times cited : (27)

References (70)
  • 1
    • 39849098717 scopus 로고    scopus 로고
    • Cluster-based ordinary kriging of piezometric head in west Texas/New Mexico-testing of hypothesis
    • Abedini M., Nasseri M., Ansari A. Cluster-based ordinary kriging of piezometric head in west Texas/New Mexico-testing of hypothesis. Journal of Hydrology 2008, 351(3-4):360-367.
    • (2008) Journal of Hydrology , vol.351 , Issue.3-4 , pp. 360-367
    • Abedini, M.1    Nasseri, M.2    Ansari, A.3
  • 2
    • 82455184540 scopus 로고    scopus 로고
    • (Eds.), Neural Networks for Hydrological Modelling. A.A. Balkema Publishers.
    • Abrahart, R., Kneale, P., See, L. (Eds.), 2004. Neural Networks for Hydrological Modelling. A.A. Balkema Publishers.
    • (2004)
    • Abrahart, R.1    Kneale, P.2    See, L.3
  • 3
    • 39049109024 scopus 로고    scopus 로고
    • Application and evaluation of kriging and cokriging methods on groundwater depth mapping
    • Ahmadi S., Sedghamiz A. Application and evaluation of kriging and cokriging methods on groundwater depth mapping. Environmental Monitoring and Assessment 2008, 138(1):357-368.
    • (2008) Environmental Monitoring and Assessment , vol.138 , Issue.1 , pp. 357-368
    • Ahmadi, S.1    Sedghamiz, A.2
  • 4
    • 60949114528 scopus 로고    scopus 로고
    • A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment
    • Anctil F., Filion M., Tournebize J. A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment. Ecological Modeling 2009, 220:879-887.
    • (2009) Ecological Modeling , vol.220 , pp. 879-887
    • Anctil, F.1    Filion, M.2    Tournebize, J.3
  • 5
    • 34548118351 scopus 로고    scopus 로고
    • Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm
    • Ayvaz M.T., Karahan H., Aral M.M. Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm. Journal of Hydrology 2007, 343:240-253.
    • (2007) Journal of Hydrology , vol.343 , pp. 240-253
    • Ayvaz, M.T.1    Karahan, H.2    Aral, M.M.3
  • 6
    • 0029750928 scopus 로고    scopus 로고
    • The use of fuzzy rules for the description of elements of the hydrological cycle
    • Bárdossy A. The use of fuzzy rules for the description of elements of the hydrological cycle. Ecological Modeling 1996, 85:59-65.
    • (1996) Ecological Modeling , vol.85 , pp. 59-65
    • Bárdossy, A.1
  • 7
    • 34247223461 scopus 로고    scopus 로고
    • Automatic fuzzy-rule assessment and its application to the modelling of nitrogen leaching for large regions
    • Bárdossy A., Haberlandt U., Krysanova V. Automatic fuzzy-rule assessment and its application to the modelling of nitrogen leaching for large regions. Soft Computing 2003, 7:370-385.
    • (2003) Soft Computing , vol.7 , pp. 370-385
    • Bárdossy, A.1    Haberlandt, U.2    Krysanova, V.3
  • 8
    • 0024471068 scopus 로고
    • Changing ideas in hydrology. The case of physically-based model
    • Beven K. Changing ideas in hydrology. The case of physically-based model. Journal of Hydrology 1989, 105:157-172.
    • (1989) Journal of Hydrology , vol.105 , pp. 157-172
    • Beven, K.1
  • 9
    • 33947187279 scopus 로고    scopus 로고
    • The Seine system: introduction to a multidisciplinary approach of the functioning of a regional river system
    • Billen G., Garnier J., Mouchel J.-M., Silvestre M. The Seine system: introduction to a multidisciplinary approach of the functioning of a regional river system. Science of the Total Environment 2007, 375:1-12.
    • (2007) Science of the Total Environment , vol.375 , pp. 1-12
    • Billen, G.1    Garnier, J.2    Mouchel, J.-M.3    Silvestre, M.4
  • 10
    • 37249004329 scopus 로고    scopus 로고
    • Accounting for extensive secondary information to improve watertable mapping
    • Boezio M., Costa J., Koppe J. Accounting for extensive secondary information to improve watertable mapping. Natural Resources Research 2006, 15(1):33-48.
    • (2006) Natural Resources Research , vol.15 , Issue.1 , pp. 33-48
    • Boezio, M.1    Costa, J.2    Koppe, J.3
  • 11
    • 0742288479 scopus 로고    scopus 로고
    • A simple approach to account for radial flow and boundary conditions when kriging hydraulic head fields for confined aquifers
    • Brochu Y., Marcotte D. A simple approach to account for radial flow and boundary conditions when kriging hydraulic head fields for confined aquifers. Mathematical Geology 2003, 35(2):111-139.
    • (2003) Mathematical Geology , vol.35 , Issue.2 , pp. 111-139
    • Brochu, Y.1    Marcotte, D.2
  • 12
    • 58149235315 scopus 로고    scopus 로고
    • Mapping water table depth using geophysical and environmental variables
    • Buchanan S., Triantafilis J. Mapping water table depth using geophysical and environmental variables. Ground Water 2009, 47(1):80-96.
    • (2009) Ground Water , vol.47 , Issue.1 , pp. 80-96
    • Buchanan, S.1    Triantafilis, J.2
  • 13
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F.-J., Chang Y.-T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Research 2006, 29:1-10.
    • (2006) Advances in Water Research , vol.29 , pp. 1-10
    • Chang, F.-J.1    Chang, Y.-T.2
  • 14
    • 17844370548 scopus 로고    scopus 로고
    • Intelligent control for modeling of real-time reservoir operation. Part II. Artificial neural network with operating rule curves
    • Chang Y., Chang L.-C., Chang F.-J. Intelligent control for modeling of real-time reservoir operation. Part II. Artificial neural network with operating rule curves. Hydrological Processes 2005, 19:1431-1444.
    • (2005) Hydrological Processes , vol.19 , pp. 1431-1444
    • Chang, Y.1    Chang, L.-C.2    Chang, F.-J.3
  • 15
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • Chen S.-H., Lin Y.-H., Chang L.-C., Chang F.-J. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Processes 2006, 20:1525-1540.
    • (2006) Hydrological Processes , vol.20 , pp. 1525-1540
    • Chen, S.-H.1    Lin, Y.-H.2    Chang, L.-C.3    Chang, F.-J.4
  • 16
    • 65949120718 scopus 로고    scopus 로고
    • Developing a hybrid multi-model for peak flood forecasting
    • Chidthong Y., Tanaka H., Supharatid S. Developing a hybrid multi-model for peak flood forecasting. Hydrological Processes 2009, 23:1725-1738.
    • (2009) Hydrological Processes , vol.23 , pp. 1725-1738
    • Chidthong, Y.1    Tanaka, H.2    Supharatid, S.3
  • 17
    • 60849119255 scopus 로고    scopus 로고
    • Application of optimal control and fuzzy theory for dynamic groundwater remediation design
    • Chu H.-J., Chang L.-C. Application of optimal control and fuzzy theory for dynamic groundwater remediation design. Water Resource Management 2009, 23:647-660.
    • (2009) Water Resource Management , vol.23 , pp. 647-660
    • Chu, H.-J.1    Chang, L.-C.2
  • 18
    • 82455184539 scopus 로고    scopus 로고
    • Neural Networks Toolbox User Guide. Technical Report, Mathworks Inc.
    • Demuth, H., Beale, M., 2003. Neural Networks Toolbox User Guide. Technical Report, Mathworks Inc.
    • (2003)
    • Demuth, H.1    Beale, M.2
  • 19
    • 0037005714 scopus 로고    scopus 로고
    • On the kriging of water table elevations using collateral information from a digital elevation model
    • Desbarats A.J., Logan C.E., Hinton M.J., Sharpe D.R. On the kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology 2002, 255(1-4):25-38.
    • (2002) Journal of Hydrology , vol.255 , Issue.1-4 , pp. 25-38
    • Desbarats, A.J.1    Logan, C.E.2    Hinton, M.J.3    Sharpe, D.R.4
  • 20
    • 33747453823 scopus 로고    scopus 로고
    • Physics-based hydrologic-response simulation: seeing through the fog of equifinality
    • Ebel B., Loague K. Physics-based hydrologic-response simulation: seeing through the fog of equifinality. Hydrological Processes 2006, 20:2887-2900.
    • (2006) Hydrological Processes , vol.20 , pp. 2887-2900
    • Ebel, B.1    Loague, K.2
  • 21
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan High Dam
    • El-Shafie A., Taha M.R., Noureldin A. A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan High Dam. Water Resource Management 2007, 21:533-556.
    • (2007) Water Resource Management , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 22
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat M. Comparison of artificial intelligence techniques for river flow forecasting. Hydrological Earth System Science 2008, 12:123-138.
    • (2008) Hydrological Earth System Science , vol.12 , pp. 123-138
    • Firat, M.1
  • 23
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • Firat M., Gungor M. River flow estimation using adaptive neuro fuzzy inference system. Mathematics and Computers in Simulation 2007, 75:87-96.
    • (2007) Mathematics and Computers in Simulation , vol.75 , pp. 87-96
    • Firat, M.1    Gungor, M.2
  • 24
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • Firat M., Gungor M. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes 2008, 22:2122-2132.
    • (2008) Hydrological Processes , vol.22 , pp. 2122-2132
    • Firat, M.1    Gungor, M.2
  • 25
    • 68349089334 scopus 로고    scopus 로고
    • Comparative analysis of fuzzy inference systems for water consumption time series prediction
    • Firat M., Turan M.E., Yurdusev M.A. Comparative analysis of fuzzy inference systems for water consumption time series prediction. Journal of Hydrology 2009, 374:235-241.
    • (2009) Journal of Hydrology , vol.374 , pp. 235-241
    • Firat, M.1    Turan, M.E.2    Yurdusev, M.A.3
  • 27
    • 33846785226 scopus 로고    scopus 로고
    • Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically-based modeling
    • Flipo N., Jeannée N., Poulin M., Even S., Ledoux E. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically-based modeling. Environmental Pollution 2007, 146(1):241-256.
    • (2007) Environmental Pollution , vol.146 , Issue.1 , pp. 241-256
    • Flipo, N.1    Jeannée, N.2    Poulin, M.3    Even, S.4    Ledoux, E.5
  • 29
    • 82455188844 scopus 로고    scopus 로고
    • Caractérisation des fonctionnements hydrologique et hydrogéologique du bassin de l'Orgeval. Technical Report, PIREN Seine.
    • Flipo, N., Rejiba, F., Kurtulus, B., Tournebize, J., Tallec, G., Vilain, G., Garnier, J., Ansart, P., Lotteau, M., 2009. Caractérisation des fonctionnements hydrologique et hydrogéologique du bassin de l'Orgeval. Technical Report, PIREN Seine.
    • (2009)
    • Flipo, N.1    Rejiba, F.2    Kurtulus, B.3    Tournebize, J.4    Tallec, G.5    Vilain, G.6    Garnier, J.7    Ansart, P.8    Lotteau, M.9
  • 30
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in ground water
    • Garcia L.A., Shigidib A. Using neural networks for parameter estimation in ground water. Journal of Hydrology 2006, 318:215-231.
    • (2006) Journal of Hydrology , vol.318 , pp. 215-231
    • Garcia, L.A.1    Shigidib, A.2
  • 31
    • 32044449423 scopus 로고    scopus 로고
    • Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets
    • Heuvelmans G., Muys B., Feyen J. Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets. Journal of Hydrology 2006, 319(1-4):245-265.
    • (2006) Journal of Hydrology , vol.319 , Issue.1-4 , pp. 245-265
    • Heuvelmans, G.1    Muys, B.2    Feyen, J.3
  • 33
    • 57349188393 scopus 로고    scopus 로고
    • Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
    • Hong Y.-S.T., White P.A. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Advances in Water Research 2009, 32:110-119.
    • (2009) Advances in Water Research , vol.32 , pp. 110-119
    • Hong, Y.-S.T.1    White, P.A.2
  • 34
    • 0027601884 scopus 로고
    • ANFIS adaptive-network-based fuzzy inference systems
    • Jang J. ANFIS adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics 1993, 23(3):665-685.
    • (1993) IEEE Transactions on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.1
  • 35
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J. Neuro-fuzzy modeling and control. Proceedings of the IEEE 1995, 83(3):378-406.
    • (1995) Proceedings of the IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.1
  • 37
    • 77955465310 scopus 로고    scopus 로고
    • Modelling non measurable processes by neural networks: Forecasting underground flow case study of the Cèze basin (Gard-France). In: Advances and Innovation in Systems, Computing Sciences and Software Engineering
    • Johannet, A., Ayral, P., Vayssade, B., 2007. Modelling non measurable processes by neural networks: Forecasting underground flow case study of the Cèze basin (Gard-France). In: Advances and Innovation in Systems, Computing Sciences and Software Engineering, pp. 53-58.
    • (2007) , pp. 53-58
    • Johannet, A.1    Ayral, P.2    Vayssade, B.3
  • 38
    • 48449101338 scopus 로고    scopus 로고
    • Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    • Karahan H., Ayvaz M.T. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks. Hydrogeology Journal 2008, 16:817-827.
    • (2008) Hydrogeology Journal , vol.16 , pp. 817-827
    • Karahan, H.1    Ayvaz, M.T.2
  • 39
    • 78049264460 scopus 로고    scopus 로고
    • Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging
    • Kholghi M., Hosseini S.M. Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging. Environmental Model Assessment 2009, 14(6):729-737.
    • (2009) Environmental Model Assessment , vol.14 , Issue.6 , pp. 729-737
    • Kholghi, M.1    Hosseini, S.M.2
  • 40
    • 0344066275 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
    • Kuo Y.-M., Liu C.-W., Lin K.-H. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Research 2004, 38(1):148-158.
    • (2004) Water Research , vol.38 , Issue.1 , pp. 148-158
    • Kuo, Y.-M.1    Liu, C.-W.2    Lin, K.-H.3
  • 41
    • 82455191899 scopus 로고    scopus 로고
    • Sensitivity analysis on an adaptative neuro fuzzy inference system (anfis) for hydraulic head interpolation: Orgeval experimental site/france
    • J. Carrera (Ed.)
    • Kurtulus B., Flipo N., Goblet P. Sensitivity analysis on an adaptative neuro fuzzy inference system (anfis) for hydraulic head interpolation: Orgeval experimental site/france. XVIII International Conference on Water Resources CMWR 2010 2010, J. Carrera (Ed.).
    • (2010) XVIII International Conference on Water Resources CMWR 2010
    • Kurtulus, B.1    Flipo, N.2    Goblet, P.3
  • 42
  • 43
    • 68049125343 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer. The La Rochefoucauld (Charente France)
    • Kurtulus B., Razack M. Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer. The La Rochefoucauld (Charente France). Hydrogeology Journal 2007, 15(2):241-254.
    • (2007) Hydrogeology Journal , vol.15 , Issue.2 , pp. 241-254
    • Kurtulus, B.1    Razack, M.2
  • 44
    • 73649113119 scopus 로고    scopus 로고
    • Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy
    • Kurtulus B., Razack M. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy. Journal of Hydrology 2010, 381:101-111.
    • (2010) Journal of Hydrology , vol.381 , pp. 101-111
    • Kurtulus, B.1    Razack, M.2
  • 46
    • 1842433866 scopus 로고    scopus 로고
    • A spatial interpolation method based on radial basis function networks incorporating a semivariogram model
    • Lin G.-F., Chen L.-H. A spatial interpolation method based on radial basis function networks incorporating a semivariogram model. Journal of Hydrology 2004, 288(3-4):288-298.
    • (2004) Journal of Hydrology , vol.288 , Issue.3-4 , pp. 288-298
    • Lin, G.-F.1    Chen, L.-H.2
  • 47
    • 0242306014 scopus 로고    scopus 로고
    • A real time hydrological forecasting system using a fuzzy clustering approach
    • Luchetta A., Manetti S. A real time hydrological forecasting system using a fuzzy clustering approach. Computers & Geosciences 2003, 29:1111-1117.
    • (2003) Computers & Geosciences , vol.29 , pp. 1111-1117
    • Luchetta, A.1    Manetti, S.2
  • 48
    • 33344464555 scopus 로고    scopus 로고
    • Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table
    • Lyon S., Seibert J., Lembo A., Walter M., Steenhuis T. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table. Hydrology and Earth Systems Science 2006, 10(1):113-125.
    • (2006) Hydrology and Earth Systems Science , vol.10 , Issue.1 , pp. 113-125
    • Lyon, S.1    Seibert, J.2    Lembo, A.3    Walter, M.4    Steenhuis, T.5
  • 49
    • 23044512802 scopus 로고    scopus 로고
    • A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact
    • Marcé R., Comerma M., García J., Armengo J. A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnology and Oceanography: Methods 2004, 2:342-355.
    • (2004) Limnology and Oceanography: Methods , vol.2 , pp. 342-355
    • Marcé, R.1    Comerma, M.2    García, J.3    Armengo, J.4
  • 51
    • 0032558883 scopus 로고    scopus 로고
    • Application of artificial neural network and genetic algorithm in flow and transport simulations
    • Morshed J., Kaluarachchi J.J. Application of artificial neural network and genetic algorithm in flow and transport simulations. Advances in Water Resources 1998, 22(2):145-158.
    • (1998) Advances in Water Resources , vol.22 , Issue.2 , pp. 145-158
    • Morshed, J.1    Kaluarachchi, J.J.2
  • 52
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P., Sudheer K., Ragan D., Ramasastri K. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 2004, 291:52-66.
    • (2004) Journal of Hydrology , vol.291 , pp. 52-66
    • Nayak, P.1    Sudheer, K.2    Ragan, D.3    Ramasastri, K.4
  • 53
    • 67349169799 scopus 로고    scopus 로고
    • Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent
    • Pai T., Wan T., Hsu S., Chang T., Tsai Y., Lin C., Hu H., Yu L. Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent. Computers and Chemical Engineering 2009, 33:1272-1278.
    • (2009) Computers and Chemical Engineering , vol.33 , pp. 1272-1278
    • Pai, T.1    Wan, T.2    Hsu, S.3    Chang, T.4    Tsai, Y.5    Lin, C.6    Hu, H.7    Yu, L.8
  • 54
    • 33947179386 scopus 로고    scopus 로고
    • KRIGRADI: A cokriging program for estimating the gradient of spatial variables from sparse data
    • Pardo-Igúzquiza E., Chica-Olmo M. KRIGRADI: A cokriging program for estimating the gradient of spatial variables from sparse data. Computers & Geosciences 2007, 33:497-512.
    • (2007) Computers & Geosciences , vol.33 , pp. 497-512
    • Pardo-Igúzquiza, E.1    Chica-Olmo, M.2
  • 56
    • 78650952041 scopus 로고    scopus 로고
    • Geostatistics for assessing the efficiency of distributed physically-based water quality model. Application to nitrates in the Seine river
    • Polus E., Flipo N., de Fouquet C., Poulin M. Geostatistics for assessing the efficiency of distributed physically-based water quality model. Application to nitrates in the Seine river. Hydrological Processes 2011, 25(2):217-233.
    • (2011) Hydrological Processes , vol.25 , Issue.2 , pp. 217-233
    • Polus, E.1    Flipo, N.2    de Fouquet, C.3    Poulin, M.4
  • 57
    • 51949092391 scopus 로고    scopus 로고
    • Alpha Science International Ltd
    • Pratihar D. Soft Computing 2008, Alpha Science International Ltd.
    • (2008) Soft Computing
    • Pratihar, D.1
  • 58
    • 58149094253 scopus 로고    scopus 로고
    • Estimating transmissivity fields and their influence on flow and transport: The case of Champagne mounts
    • Renard F., Jeannee N. Estimating transmissivity fields and their influence on flow and transport: The case of Champagne mounts. Water Resources Research 2008, 44:1-12.
    • (2008) Water Resources Research , vol.44 , pp. 1-12
    • Renard, F.1    Jeannee, N.2
  • 59
    • 53749090456 scopus 로고    scopus 로고
    • Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information
    • Rivest M., Marcotte D., Pasquier P. Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information. Journal of Hydrology 2008, 361(3-4):349-361.
    • (2008) Journal of Hydrology , vol.361 , Issue.3-4 , pp. 349-361
    • Rivest, M.1    Marcotte, D.2    Pasquier, P.3
  • 60
    • 13744256757 scopus 로고    scopus 로고
    • Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks
    • Sahoo G., Ray C., Wade H. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecological Modeling 2005, 183:29-46.
    • (2005) Ecological Modeling , vol.183 , pp. 29-46
    • Sahoo, G.1    Ray, C.2    Wade, H.3
  • 61
    • 34249898039 scopus 로고    scopus 로고
    • A simple neural network model for the determination of aquifer parameters
    • Samani N., Gohari-Moghadam M., Safavi A. A simple neural network model for the determination of aquifer parameters. Journal of Hydrology 2007, 340:1-11.
    • (2007) Journal of Hydrology , vol.340 , pp. 1-11
    • Samani, N.1    Gohari-Moghadam, M.2    Safavi, A.3
  • 62
    • 67349233010 scopus 로고    scopus 로고
    • Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin Oasis of northwest China
    • Sun Y., Kang S., Li F., Zhang L. Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin Oasis of northwest China. Environmental Modelling & Software 2009, 24(10):1163-1170.
    • (2009) Environmental Modelling & Software , vol.24 , Issue.10 , pp. 1163-1170
    • Sun, Y.1    Kang, S.2    Li, F.3    Zhang, L.4
  • 63
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 1985, 15(1):116-132.
    • (1985) IEEE Transactions on Systems, Man, and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 64
    • 33646128962 scopus 로고    scopus 로고
    • Evaluation and optimisation of groundwater observation networks using the kriging methodology
    • Theodossiou N., Latinopoulos P. Evaluation and optimisation of groundwater observation networks using the kriging methodology. Environmental Modelling & Software 2006, 21(7):991-1000.
    • (2006) Environmental Modelling & Software , vol.21 , Issue.7 , pp. 991-1000
    • Theodossiou, N.1    Latinopoulos, P.2
  • 65
    • 33644891019 scopus 로고    scopus 로고
    • Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
    • Tutmez B., Hatipoglu Z., Kaymak U. Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Computers & Geosciences 2006, 32(4):421-433.
    • (2006) Computers & Geosciences , vol.32 , Issue.4 , pp. 421-433
    • Tutmez, B.1    Hatipoglu, Z.2    Kaymak, U.3
  • 66
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W.-C., Chau K.-W., Cheng C.-T., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 2009, 374:294-306.
    • (2009) Journal of Hydrology , vol.374 , pp. 294-306
    • Wang, W.-C.1    Chau, K.-W.2    Cheng, C.-T.3    Qiu, L.4
  • 67
    • 33745438549 scopus 로고    scopus 로고
    • Optimal groundwater remediation design using an adaptive neural network genetic algorithm
    • Yan S., Minsker B. Optimal groundwater remediation design using an adaptive neural network genetic algorithm. Water Resources Research 2006, 42(5):W05407.
    • (2006) Water Resources Research , vol.42 , Issue.5
    • Yan, S.1    Minsker, B.2
  • 68
    • 58849164849 scopus 로고    scopus 로고
    • Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey
    • Yurdusev M.A., Firat M. Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey. Journal of Hydrology 2009, 365:225-234.
    • (2009) Journal of Hydrology , vol.365 , pp. 225-234
    • Yurdusev, M.A.1    Firat, M.2
  • 70
    • 85158117883 scopus 로고    scopus 로고
    • Design of experiments in neuro-fuzzy systems. In: Proceedings of the Fifth International Conference on Hybrid Intelligent Systems (HIS05), IEEE.
    • Zanchettin, C., Minku, F., Ludernir, T., 2005. Design of experiments in neuro-fuzzy systems. In: Proceedings of the Fifth International Conference on Hybrid Intelligent Systems (HIS05), IEEE.
    • (2005)
    • Zanchettin, C.1    Minku, F.2    Ludernir, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.