메뉴 건너뛰기




Volumn 35, Issue SUPPL. 1, 2011, Pages

Brief review of regression-based and machine learning methods in genetic epidemiology: The Genetic Analysis Workshop 17 experience

Author keywords

Cluster analysis; Cross validation; Decision trees; LASSO; Logic regression; Logistic regression; Poisson regression; Random forests; Ridge regression; Software; Supervised learning; Unsupervised learning

Indexed keywords

ARTICLE; CASE CONTROL STUDY; CLINICAL FEATURE; CLUSTER ANALYSIS; CROSS VALIDATION; DATA ANALYSIS SOFTWARE; DECISION TREE; GENERALIZED LINEAR ANALYSIS; GENETIC ALGORITHM; GENETIC ANALYSIS; GENETIC ANALYSIS WORKSHOP 17; GENETIC ASSOCIATION; GENETIC EPIDEMIOLOGY; GENETIC SELECTION; GENETIC VARIABILITY; INHERITANCE; LINEAR REGRESSION ANALYSIS; LOGIC; MACHINE LEARNING; OUTCOME ASSESSMENT; PREDICTION; QUANTITATIVE TRAIT; RANDOM FOREST; REGRESSION ANALYSIS; SAMPLE SIZE; VALIDATION PROCESS; WORKSHOP;

EID: 82455175511     PISSN: 07410395     EISSN: 10982272     Source Type: Journal    
DOI: 10.1002/gepi.20642     Document Type: Article
Times cited : (84)

References (34)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. 1996. Bagging predictors. Mach Learn 24:123-140.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001. Random forests. Mach Learn 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 35348970485 scopus 로고    scopus 로고
    • GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest
    • Diaz-Uriarte R. 2007. GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinform 8:328.
    • (2007) BMC Bioinform , vol.8 , pp. 328
    • Diaz-Uriarte, R.1
  • 7
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B. 1979. Bootstrap methods: another look at the jackknife. Ann Stat 7:1-26.
    • (1979) Ann Stat , vol.7 , pp. 1-26
    • Efron, B.1
  • 10
    • 2342622786 scopus 로고    scopus 로고
    • Leave one out error, stability, and generalization of voting combinations of classifiers
    • Evgeniou T, Pontil M, Elisseeff A. 2004. Leave one out error, stability, and generalization of voting combinations of classifiers. Mach Learn 55:71-97.
    • (2004) Mach Learn , vol.55 , pp. 71-97
    • Evgeniou, T.1    Pontil, M.2    Elisseeff, A.3
  • 11
    • 82455215174 scopus 로고    scopus 로고
    • On bagging and non-linear estimation. Technical report, Stanford University, Stanford, CA.
    • Friedman JH, Hall P. 2000. On bagging and non-linear estimation. Technical report, Stanford University, Stanford, CA.
    • (2000)
    • Friedman, J.H.1    Hall, P.2
  • 12
    • 3543107923 scopus 로고    scopus 로고
    • Bagging equalizes influence
    • Grandvalet Y. 2004. Bagging equalizes influence. Mach Learn 55:251-270.
    • (2004) Mach Learn , vol.55 , pp. 251-270
    • Grandvalet, Y.1
  • 13
    • 77953969990 scopus 로고    scopus 로고
    • Robust estimation for zero-inflated Poisson regression
    • Hall DB, Shen J. 2010. Robust estimation for zero-inflated Poisson regression. Scand J Stat 37:237-252.
    • (2010) Scand J Stat , vol.37 , pp. 237-252
    • Hall, D.B.1    Shen, J.2
  • 15
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • Hartigan JA, Wong MA. 1979. A K-means clustering algorithm. Appl Stat 28:100-108.
    • (1979) Appl Stat , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 17
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard R. 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 19
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • In:, v., San Francisco, CA: Morgan Kaufmann. .
    • Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, v. 2, 1137-1145. San Francisco, CA: Morgan Kaufmann. .
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , vol.2 , pp. 1137-1145
    • Kohavi, R.1
  • 20
    • 0026821975 scopus 로고
    • Zero-inflated Poisson regression, with an application to defects in manufacturing
    • Lambert D. 1992. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34:1-14.
    • (1992) Technometrics , vol.34 , pp. 1-14
    • Lambert, D.1
  • 21
    • 84860606317 scopus 로고    scopus 로고
    • Estimation consistency of the group LASSO and its applications
    • Liu H, Zhang J. 2009. Estimation consistency of the group LASSO and its applications. J Mach Learn Res Workshop Conf Proc 5:376-383.
    • (2009) J Mach Learn Res Workshop Conf Proc , vol.5 , pp. 376-383
    • Liu, H.1    Zhang, J.2
  • 24
    • 65349193793 scopus 로고    scopus 로고
    • LASSO-type recovery of sparse representations for high-dimensional data
    • Meinshausen N, Yu B. 2009. LASSO-type recovery of sparse representations for high-dimensional data. Ann Stat 37:246-270.
    • (2009) Ann Stat , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 28
    • 12744255343 scopus 로고    scopus 로고
    • Exploring interactions in high-dimensional genomic data: an overview of logic regression, with applications
    • Ruczinski I, Kooperberg C, LeBlanc M. 2004. Exploring interactions in high-dimensional genomic data: an overview of logic regression, with applications. J Multivariate Anal 90:178-195.
    • (2004) J Multivariate Anal , vol.90 , pp. 178-195
    • Ruczinski, I.1    Kooperberg, C.2    LeBlanc, M.3
  • 29
    • 77954485448 scopus 로고    scopus 로고
    • On safari to Random Jungle: a fast implementation of random forests for high-dimensional data
    • Schwarz DF, Konig IR, Ziegler A. 2010. On safari to Random Jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics 26:1752-1758.
    • (2010) Bioinformatics , vol.26 , pp. 1752-1758
    • Schwarz, D.F.1    Konig, I.R.2    Ziegler, A.3
  • 30
    • 77958469133 scopus 로고    scopus 로고
    • Multigenic modeling of complex disease by random forests
    • Sun YV. 2010. Multigenic modeling of complex disease by random forests. Adv Genet 72:73-99.
    • (2010) Adv Genet , vol.72 , pp. 73-99
    • Sun, Y.V.1
  • 32
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani R. 1996. Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B 58:267-288.
    • (1996) J R Stat Soc Ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 82455175480 scopus 로고    scopus 로고
    • Lessons learned from the Genetic Analysis Workshop 17: Transitioning from genome-wide association studies to whole-genome statistical genetic analysis
    • this issue.
    • Wilson AF, Ziegler A. 2011. Lessons learned from the Genetic Analysis Workshop 17: Transitioning from genome-wide association studies to whole-genome statistical genetic analysis. Genet Epidemiol, this issue.
    • (2011) Genet Epidemiol
    • Wilson, A.F.1    Ziegler, A.2
  • 34
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by LASSO penalized logistic regression
    • Wu TT, Chen YF, Hastie T, Sobel E, Lange K. 2009. Genome-wide association analysis by LASSO penalized logistic regression. Bioinformatics 25:714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.4    Lange, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.