메뉴 건너뛰기




Volumn 39, Issue 4, 2012, Pages 4240-4249

Evolutionary attribute ordering in Bayesian networks for predicting the metabolic syndrome

Author keywords

Attribute ordering optimization; Bayesian network; Metabolic syndrome; Prognostic modeling

Indexed keywords

APPLICATION PROGRAMS; ASIAN COUNTRIES; BAYESIAN NETWORK MODELS; DATA SETS; DYSLIPIDEMIAS; EVOLUTIONARY APPROACH; INSULIN RESISTANCE; K-NEAREST NEIGHBORS; K2 ALGORITHM; LIFE STYLES; MEDICAL DOMAINS; MEDICAL EXPERTS; METABOLIC SYNDROMES; OPTIMIZATION METHOD; PROBABILISTIC MODELING; PROGNOSTIC MODEL; PROGNOSTIC MODELING; RESEARCH ISSUES; RISK FACTORS; STRUCTURE-LEARNING;

EID: 82255192204     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.09.110     Document Type: Article
Times cited : (29)

References (33)
  • 1
    • 1842714948 scopus 로고    scopus 로고
    • Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
    • DOI 10.1016/j.artmed.2003.11.007, PII S0933365703001349
    • P. Antal, G. Fannes, D. Timmerman, Y. Moreau, and B.D. Moor Using literature and data to learn Bayesian networks as clinical models of ovarian tumors Artificial Intelligence in Medicine 30 2004 257 281 (Pubitemid 38471896)
    • (2004) Artificial Intelligence in Medicine , vol.30 , Issue.3 , pp. 257-281
    • Antal, P.1    Fannes, G.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 2
    • 0041334207 scopus 로고    scopus 로고
    • Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection
    • P. Antal, G. Fannes, D. Timmerman, Y. Moreau, and B.D. Moor Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection Artificial Intelligence in Medicine 29 2003 29 60
    • (2003) Artificial Intelligence in Medicine , vol.29 , pp. 29-60
    • Antal, P.1    Fannes, G.2    Timmerman, D.3    Moreau, Y.4    Moor, B.D.5
  • 3
    • 0034573064 scopus 로고    scopus 로고
    • Automatic identification of patients eligible for a pneumonia guideline
    • D. Aronsky, and P.J. Haug Automatic identification of patients eligible for a pneumonia guideline Proc/AMIA Annual Symposium 2000 12 16
    • (2000) Proc/AMIA Annual Symposium , pp. 12-16
    • Aronsky, D.1    Haug, P.J.2
  • 4
    • 49649122545 scopus 로고    scopus 로고
    • Metabolic syndrome as a cardiovascular disease risk factor: Patients evaluated in primary care
    • J.J. Cabre, F. Martin, B. Costa, J.L. Pinol, J.L. Llor, and Y. Ortega Metabolic syndrome as a cardiovascular disease risk factor: Patients evaluated in primary care BMC Public Health 8 2008 251
    • (2008) BMC Public Health , vol.8 , pp. 251
    • Cabre, J.J.1    Martin, F.2    Costa, B.3    Pinol, J.L.4    Llor, J.L.5    Ortega, Y.6
  • 6
    • 42149187635 scopus 로고    scopus 로고
    • Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees
    • X. Chen, and M. Blanchette Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees BMC Bioinformatics 8 2007 S2
    • (2007) BMC Bioinformatics , vol.8 , pp. 2
    • Chen, X.1    Blanchette, M.2
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper, and E.A. Herskovits A Bayesian method for the induction of probabilistic networks from data Machine Learning 9 1992 309 347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.A.2
  • 9
    • 1842714928 scopus 로고    scopus 로고
    • Understanding tuberculosis epidemiology using structured statistical models
    • DOI 10.1016/j.artmed.2003.11.003, PII S0933365703001337
    • L. Getoor, J.T. Rhee, D. Koller, and P. Small Understanding tuberculosis epidemiology using structured statistical models Artificial Intelligence in Medicine 30 2004 233 256 (Pubitemid 38471895)
    • (2004) Artificial Intelligence in Medicine , vol.30 , Issue.3 , pp. 233-256
    • Getoor, L.1    Rhee, J.T.2    Koller, D.3    Small, P.4
  • 10
    • 0037375762 scopus 로고    scopus 로고
    • The metabolic syndrome as a vicious cycle: Does obesity beget obesity?
    • DOI 10.1016/S0306-9877(03)00053-7
    • J.P. Girod, and D.J. Brotman The metabolic syndrome as a vicious cycle: Does obesity beget obesity? Medical Hypotheses 60 2003 584 589 (Pubitemid 36315293)
    • (2003) Medical Hypotheses , vol.60 , Issue.4 , pp. 584-589
    • Girod, J.P.1    Brotman, D.J.2
  • 11
    • 62049083459 scopus 로고    scopus 로고
    • Specifying computer-based counseling systems in health care: A new approach to user-interface and interaction design
    • D. Herzbert, N. Marsden, P. Kubler, C. Leonhardt, S. Thomanek, and H. Jung Specifying computer-based counseling systems in health care: A new approach to user-interface and interaction design Journal of Biomedical Informatics 42 2009 347 355
    • (2009) Journal of Biomedical Informatics , vol.42 , pp. 347-355
    • Herzbert, D.1    Marsden, N.2    Kubler, P.3    Leonhardt, C.4    Thomanek, S.5    Jung, H.6
  • 12
    • 34447281088 scopus 로고    scopus 로고
    • Towards efficient variables ordering for Bayesian networks classifier
    • DOI 10.1016/j.datak.2007.02.003, PII S0169023X07000237
    • E.R. Hruschka, and N.F.F. Ebecken Towards efficient variables ordering for Bayesian networks classifier Data & Knowledge Engineering 63 2007 258 269 (Pubitemid 47048426)
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.2 , pp. 258-269
    • Hruschka Jr., E.R.1    Ebecken, N.F.F.2
  • 14
    • 2442705696 scopus 로고    scopus 로고
    • Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
    • W.H. Hsu Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning Information Sciences 163 2004 103 122
    • (2004) Information Sciences , vol.163 , pp. 103-122
    • Hsu, W.H.1
  • 15
    • 2342469372 scopus 로고    scopus 로고
    • Computer aided fuzzy medical diagnosis
    • P.R. Innocent, and R.I. John Computer aided fuzzy medical diagnosis Information Sciences 162 2004 81 104
    • (2004) Information Sciences , vol.162 , pp. 81-104
    • Innocent, P.R.1    John, R.I.2
  • 17
    • 0030245966 scopus 로고    scopus 로고
    • Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters
    • P. Larranaga, M. Poza, Y. Yurranmendi, R.H. Murga, and C.M.H. Kuijpers Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters IEEE Transactions on Pattern Analysis and Machine Intelligence 18 1996 912 926 (Pubitemid 126772833)
    • (1996) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.18 , Issue.9 , pp. 912-926
    • Larranaga, P.1
  • 18
    • 69849095120 scopus 로고    scopus 로고
    • Multiple biomarkers and their relative contributions to identifying metabolic syndrome
    • J.G. Lee, S. Lee, Y.J. Kim, H.K. Jin, B.M. Cho, and Y.J. Kim Multiple biomarkers and their relative contributions to identifying metabolic syndrome Clinica Chimica Acta 408 2009 50 55
    • (2009) Clinica Chimica Acta , vol.408 , pp. 50-55
    • Lee, J.G.1    Lee, S.2    Kim, Y.J.3    Jin, H.K.4    Cho, B.M.5    Kim, Y.J.6
  • 19
    • 0344309883 scopus 로고    scopus 로고
    • Bayesian networks for knowledge discovery in large datasets: Basics for nurse researchers
    • DOI 10.1016/j.jbi.2003.09.022
    • S.M. Lee, and P.A. Abbott Bayesian networks for knowledge discovery in large datasets: Basics for nurse researchers Journal of Biomedical Informatics 36 2003 389 399 (Pubitemid 37476306)
    • (2003) Journal of Biomedical Informatics , vol.36 , Issue.4-5 , pp. 389-399
    • Lee, S.-M.1    Abbott, P.A.2
  • 22
    • 23744506561 scopus 로고    scopus 로고
    • Mechanisms of the metabolic syndrome
    • DOI 10.1016/j.ddmec.2004.09.010
    • N.N. Mehta, and M.P. Reilly Mechanisms of the metabolic syndrome Drug Discovery Today: Disease Mechanism 1 2004 187 194 (Pubitemid 41128971)
    • (2004) Drug Discovery Today: Disease Mechanisms , vol.1 , Issue.2 , pp. 187-194
    • Mehta, N.N.1    Reilly, M.P.2
  • 25
    • 47949111330 scopus 로고    scopus 로고
    • Human activity recognition in pervasive health-care: Supporting efficient remote collaboration
    • V. Osmani, S. Balasubramaniam, and D. Botvich Human activity recognition in pervasive health-care: Supporting efficient remote collaboration Journal of Network and Computer Applications 31 2008 628 655
    • (2008) Journal of Network and Computer Applications , vol.31 , pp. 628-655
    • Osmani, V.1    Balasubramaniam, S.2    Botvich, D.3
  • 26
    • 38349114486 scopus 로고    scopus 로고
    • Metabolic syndrome and its association with diet and physical activity in US adolescents
    • Y. Pan, and C.A. Pratt Metabolic syndrome and its association with diet and physical activity in US adolescents Journal of the American Dietetic Association 108 2008 276 286
    • (2008) Journal of the American Dietetic Association , vol.108 , pp. 276-286
    • Pan, Y.1    Pratt, C.A.2
  • 29
    • 0035019648 scopus 로고    scopus 로고
    • Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patients data
    • DOI 10.1016/S0933-3657(00)00111-1, PII S0933365700001111
    • B. Sierra, N. Serrano, P. Larranaga, E.J. Plasencia, I. Inza, and J.J. Jimenez Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patients data Artificial Intelligence in Medicine 22 2001 233 248 (Pubitemid 32453316)
    • (2001) Artificial Intelligence in Medicine , vol.22 , Issue.3 , pp. 233-248
    • Sierra, B.1    Serrano, N.2    Larranaga, P.3    Plasencia, E.J.4    Inza, I.5    Jimenez, J.J.6    Revuelta, P.7    Mora, M.L.8
  • 30
    • 13844292724 scopus 로고    scopus 로고
    • The metabolic syndrome: Prevalence and risk factors in the urban population of Ho Chi Minh City
    • DOI 10.1016/j.diabres.2004.07.014
    • L.N.T.D. Son, D. Kunii, N.T.K. Hung, T. Sakai, and S. Yamamoto The metabolic syndrome: Prevalence and risk factors in the urban population of Ho Chi Minh City Diabetes Care and Clinical Practice 67 2005 243 250 (Pubitemid 40254314)
    • (2005) Diabetes Research and Clinical Practice , vol.67 , Issue.3 , pp. 243-250
    • Son, L.N.T.D.1    Kunii, D.2    Hung, N.T.K.3    Sakai, T.4    Yamamoto, S.5
  • 31
    • 38049004401 scopus 로고    scopus 로고
    • A Markov blanket based strategy to optimize the induction of Bayesian classifiers when using conditional independence learning algorithms
    • I.Y. Song, J. Eder, and T.M. Nguyen A Markov blanket based strategy to optimize the induction of Bayesian classifiers when using conditional independence learning algorithms Lecture Notes in Computer Science 4654 2007 355 364
    • (2007) Lecture Notes in Computer Science , vol.4654 , pp. 355-364
    • Song, I.Y.1    Eder, J.2    Nguyen, T.M.3
  • 32
    • 19344369418 scopus 로고    scopus 로고
    • A spatio-temporal Bayesian network classifier for understanding visual field deterioration
    • DOI 10.1016/j.artmed.2004.07.004, PII S0933365704001034
    • A. Tucker, V. Vinciotti, X. Liu, and D. Garway-Heath A spatiooral Bayesian network classifier for understanding visual field deterioration Artificial Intelligence in Medicine 34 2005 163 177 (Pubitemid 40719033)
    • (2005) Artificial Intelligence in Medicine , vol.34 , Issue.2 , pp. 163-177
    • Tucker, A.1    Vinciotti, V.2    Liu, X.3    Garway-Heath, D.4
  • 33
    • 0033135155 scopus 로고    scopus 로고
    • Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network
    • DOI 10.1016/S1386-5056(98)00174-9, PII S1386505698001749
    • X.H. Wang, B. Zheng, W.F. Good, J.L. King, and Y.H. Chang Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network International Journal of Medical Informatics 54 1999 115 126 (Pubitemid 29166578)
    • (1999) International Journal of Medical Informatics , vol.54 , Issue.2 , pp. 115-126
    • Wang, X.-H.1    Zheng, B.2    Good, W.F.3    King, J.L.4    Chang, Y.-H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.