메뉴 건너뛰기




Volumn 22, Issue 3, 2001, Pages 233-248

Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patients data

Author keywords

10 Fold cross validation; Bayesian networks; Genetic algorithms; Machine learning; Stacked generalization; Supervised classification

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; STATISTICAL METHODS;

EID: 0035019648     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0933-3657(00)00111-1     Document Type: Article
Times cited : (53)

References (44)
  • 2
    • 0000217085 scopus 로고
    • Tolerating, irrelevant and novel attributes in instance-based learning algorithms
    • Aha D. Tolerating, irrelevant and novel attributes in instance-based learning algorithms. Int. J. Man-Machine Studies. 36(1):1992;267-287.
    • (1992) Int. J. Man-Machine Studies , vol.36 , Issue.1 , pp. 267-287
    • Aha, D.1
  • 6
    • 34249966007 scopus 로고
    • The cn2 induction algorithm
    • Clark P., Nibblet T. The cn2 induction algorithm. Machine Learning. 3(4):1989;261-283.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Nibblet, T.2
  • 12
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning. 20:1995;197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 15
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used databases
    • Holte R.C. Very simple classification rules perform well on most commonly used databases. Machine Learning. 11:1994;63-90.
    • (1994) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 21
    • 0000210889 scopus 로고    scopus 로고
    • Data mining using MLC++, a machine learning library in C++
    • Kohavi R, Sommerfield D, Dougherty J. Data mining using MLC++, a machine learning library in C++, Int J Artif Intell Tools 1997;6(4) 537-66 ( http://www.sgi.com/Technology/mlc/ ).
    • (1997) Int J Artif Intell Tools , vol.6 , Issue.4 , pp. 537-566
    • Kohavi, R.1    Sommerfield, D.2    Dougherty, J.3
  • 24
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application on expert systems
    • Lauritzen S.L., Spiegelhalter D.J. Local computations with probabilities on graphical structures and their application on expert systems. J. R. Statist. Soc. B. 50:1988;157-224.
    • (1988) J. R. Statist. Soc. B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 25
    • 0027132478 scopus 로고
    • A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study
    • Le Gall J.R., Lemeshow S., Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 270:1993;2957-2963.
    • (1993) JAMA , vol.270 , pp. 2957-2963
    • Le Gall, J.R.1    Lemeshow, S.2    Saulnier, F.3
  • 26
    • 0027422556 scopus 로고
    • Mortality probability models (MPM II) based on an international cohort of intensive care unit patients
    • Lemeshow S., Teres D., Klar J., Avrunin J.S., Gehlbach S.H., Rapoport J. Mortality probability models (MPM II) based on an international cohort of intensive care unit patients. JAMA. 270:1993;2478-2486.
    • (1993) JAMA , vol.270 , pp. 2478-2486
    • Lemeshow, S.1    Teres, D.2    Klar, J.3    Avrunin, J.S.4    Gehlbach, S.H.5    Rapoport, J.6
  • 27
    • 0031211834 scopus 로고    scopus 로고
    • An exact probability metric for decision tree splitting and stopping
    • Martin JK. An exact probability metric for decision tree splitting and stopping. Machine Learning 1997;28(2/3).
    • (1997) Machine Learning , vol.28 , Issue.2-3
    • Martin, J.K.1
  • 28
    • 0003915394 scopus 로고
    • The AQ15 inductive learning system: An overview and experiments
    • Orsay (France): Universitéde Paris-Sud
    • Michalski RS, Mozetic I, Hong J, Lavrac N. The AQ15 inductive learning system: an overview and experiments. In: Proceedings of IMAL 1986. Orsay (France): Universitéde Paris-Sud, 1986.
    • (1986) In: Proceedings of IMAL 1986
    • Michalski, R.S.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 29
    • 0002602212 scopus 로고
    • Technical Report. Coventry (UK): University of Warwick, School of Industrial and Business Studies
    • Mingers J. A comparison of methods of pruning induced Rule Trees. Technical Report. Coventry (UK): University of Warwick, School of Industrial and Business Studies, 1988.
    • (1988) A Comparison of Methods of Pruning Induced Rule Trees
    • Mingers, J.1
  • 31
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • In: Bramer MA, editor Cambridge: Cambridge University Press
    • Niblett T, Bratko I. Learning decision rules in noisy domains. In: Bramer MA, editor. Research and development in expert systems III, Cambridge: Cambridge University Press, 1987. p. 25-34.
    • (1987) Research and Development in Expert Systems , vol.3 , pp. 25-34
    • Niblett, T.1    Bratko, I.2
  • 32
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • Pearl J. Evidential reasoning using stochastic simulation of causal models. Artif. Intell. 32(2):1987;245-257.
    • (1987) Artif. Intell. , vol.32 , Issue.2 , pp. 245-257
    • Pearl, J.1
  • 34
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning. 1:1986;81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 35
    • 85027178264 scopus 로고
    • In: McDermott J, editor IJCAI-87. San Francisco (CA): Morgan Kaufmann
    • Quinlan JR. In: McDermott J, editor. Generating production rules from decision trees, IJCAI-87. San Francisco (CA): Morgan Kaufmann, 1987. p. 304-7.
    • (1987) Generating Production Rules from Decision Trees , pp. 304-307
    • Quinlan, J.R.1
  • 38
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparision between different approaches
    • Sierra B., Larrañaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparision between different approaches. Artif. Intell. Med. 14:1998;215-230.
    • (1998) Artif. Intell. Med. , vol.14 , pp. 215-230
    • Sierra, B.1    Larrañaga, P.2
  • 40
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical procedures
    • Stone M. Cross-validation choice and assessment of statistical procedures. J. R. Statist. Soc. 36:1974;111-147.
    • (1974) J. R. Statist. Soc. , vol.36 , pp. 111-147
    • Stone, M.1
  • 44
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks. 5:1992;241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.