메뉴 건너뛰기




Volumn 39, Issue 1, 2012, Pages 335-349

Robust data clustering by learning multi-metric Lq-norm distances

Author keywords

Distance learning; Multi metric Lq norm distance; Outlier detection; Robust clustering

Indexed keywords

BREAST CANCER; CLUSTERING APPROACH; DATA SETS; DATA SPACE; GAUSSIAN MIXTURES; HEAVY-TAILED; LOCATION ESTIMATION; LP-NORM; LUNG CANCER; MULTI-KERNEL; MULTI-METRIC LQ-NORM DISTANCE; MULTI-OBJECTIVE OPTIMIZATION PROBLEM; NOISE LEVELS; NONGAUSSIANITY; OUTLIER DETECTION; ROBUST CLUSTERING; ROBUST DATUM; UNSUPERVISED CLUSTERING; WISCONSIN;

EID: 81855196981     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.07.023     Document Type: Article
Times cited : (9)

References (40)
  • 2
    • 33845659662 scopus 로고    scopus 로고
    • Robust Bayesian clustering
    • C. Archambeau, and M. Verleysen Robust Bayesian clustering Neural Networks 20 129-138 2007 129 138
    • (2007) Neural Networks , vol.20 , Issue.129-138 , pp. 129-138
    • Archambeau, C.1    Verleysen, M.2
  • 3
    • 36749021623 scopus 로고    scopus 로고
    • A genetic approach for efficient outlier detection in projected space
    • S. Bandyopadhyay, and S. Santra A genetic approach for efficient outlier detection in projected space Pattern Recognition 41 4 2008 1338 1349
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1338-1349
    • Bandyopadhyay, S.1    Santra, S.2
  • 6
    • 5144221771 scopus 로고    scopus 로고
    • The complexity of computing the MCD-estimator
    • T. Bernholt, and P. Fischer The complexity of computing the MCD-estimator Theoretical Computer Science 326 1-3 2004 383 398
    • (2004) Theoretical Computer Science , vol.326 , Issue.13 , pp. 383-398
    • Bernholt, T.1    Fischer, P.2
  • 7
    • 48649101762 scopus 로고    scopus 로고
    • Robust fuzzy clustering using mixtures of student's-t distributions
    • S. Chatzis, and T. Varvarigou Robust fuzzy clustering using mixtures of student's-t distributions Pattern Recognition Letter 29 2008 1901 1905
    • (2008) Pattern Recognition Letter , vol.29 , pp. 1901-1905
    • Chatzis, S.1    Varvarigou, T.2
  • 9
    • 67349276655 scopus 로고    scopus 로고
    • Robust probabilistic PCA with missing data and contribution analysis for outlier detection
    • T. Chen, E. Martin, and G. Montague Robust probabilistic PCA with missing data and contribution analysis for outlier detection Computational Statistics and Data Analysis 53 10 2009 3706 3716
    • (2009) Computational Statistics and Data Analysis , vol.53 , Issue.10 , pp. 3706-3716
    • Chen, T.1    Martin, E.2    Montague, G.3
  • 12
    • 67650915105 scopus 로고    scopus 로고
    • Outliers detection with the minimum covariance determinant estimator in practice
    • C. Fauconnier, and G. Haesbroeck Outliers detection with the minimum covariance determinant estimator in practice Statistical Methodology 6 4 2009 363 379
    • (2009) Statistical Methodology , vol.6 , Issue.4 , pp. 363-379
    • Fauconnier, C.1    Haesbroeck, G.2
  • 13
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • M. Girolami Mercer kernel-based clustering in feature space IEEE Transactions on Neural Networks 13 3 2002 780 784
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 14
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • G.J. Gordon, R.V. Jensen, L.L. Hsiao, S.R. Gullans, J.E. Blumenstock, and S. Ramaswamy Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma Cancer Research 62 2002 4963 4967
    • (2002) Cancer Research , vol.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.L.3    Gullans, S.R.4    Blumenstock, J.E.5    Ramaswamy, S.6
  • 15
    • 51649118270 scopus 로고    scopus 로고
    • A boundary method for outlier detection based on support vector domain description
    • S.M. Guo, L.C. Chen, and J.S.H. Tsai A boundary method for outlier detection based on support vector domain description Pattern Recognition 42 1 2009 77 83
    • (2009) Pattern Recognition , vol.42 , Issue.1 , pp. 77-83
    • Guo, S.M.1    Chen, L.C.2    Tsai, J.S.H.3
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Machine Learning 46 2002 389 422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 17
    • 0344513198 scopus 로고    scopus 로고
    • Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator
    • J. Hardin, and D.M. Rocke Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator Computational Statistics and Data Analysis 44 4 2004 625 638
    • (2004) Computational Statistics and Data Analysis , vol.44 , Issue.4 , pp. 625-638
    • Hardin, J.1    Rocke, D.M.2
  • 18
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering strategies using Lp norm distances
    • R.J. Hathaway, J.C. Bezdek, and Y. Hu Generalized fuzzy c-means clustering strategies using Lp norm distances IEEE Transactions on Fuzzy Systems 8 5 2000 576 582
    • (2000) IEEE Transactions on Fuzzy Systems , vol.8 , Issue.5 , pp. 576-582
    • Hathaway, R.J.1    Bezdek, J.C.2    Hu, Y.3
  • 20
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge, and J. Austin A survey of outlier detection methodologies Artificial Intelligence Review 22 2 2004 85 126
    • (2004) Artificial Intelligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 23
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen, and E. Oja Independent component analysis: Algorithms and applications Neural Networks 13 2000 411 430
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 26
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • O.L. Mangasarian, and W.H. Wolberg Cancer diagnosis via linear programming SIAM News 23 5 1990 1 18
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 28
    • 0035418979 scopus 로고    scopus 로고
    • Multivariate outlier detection and robust covariance matrix estimation
    • D. Peña, and F.J. Prieto Multivariate outlier detection and robust covariance matrix estimation Technometrics 43 3 2001 286 310
    • (2001) Technometrics , vol.43 , Issue.3 , pp. 286-310
    • Peña, D.1    Prieto, F.J.2
  • 29
    • 33845711639 scopus 로고    scopus 로고
    • A novel approach to noise clustering for outlier detection
    • F. Rehm, F. Klawonn, and R. Kruse A novel approach to noise clustering for outlier detection Soft Computing 11 5 2007 489 494
    • (2007) Soft Computing , vol.11 , Issue.5 , pp. 489-494
    • Rehm, F.1    Klawonn, F.2    Kruse, R.3
  • 32
    • 56349122418 scopus 로고    scopus 로고
    • Outlier identification and market segmentation using kernel-based clustering techniques
    • C.H. Wang Outlier identification and market segmentation using kernel-based clustering techniques Expert Systems with Applications 36 2 2009 3744 3750
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3744-3750
    • Wang, C.H.1
  • 33
    • 34548255908 scopus 로고    scopus 로고
    • An iterative non-parametric clustering algorithm based on local shrinking
    • X. Wang, W. Qiu, and R.H. Zamar An iterative non-parametric clustering algorithm based on local shrinking Computational Statistics and Data Analysis 52 2007 286 298
    • (2007) Computational Statistics and Data Analysis , vol.52 , pp. 286-298
    • Wang, X.1    Qiu, W.2    Zamar, R.H.3
  • 35
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • Xing, E. P.; Ng, A. Y.; Jordan, M. I. & Russell, S. (2002). Distance metric learning with application to clustering with side-information. In NIPS2002.
    • (2002) NIPS2002
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 36
    • 33746131974 scopus 로고    scopus 로고
    • Kernel-based distance metric learning for microarray data classification
    • H.L. Xiong, and X.W. Chen Kernel-based distance metric learning for microarray data classification BMC Bioinformatics 7 299 2006 1 11
    • (2006) BMC Bioinformatics , vol.7 , Issue.299 , pp. 1-11
    • Xiong, H.L.1    Chen, X.W.2
  • 37
    • 58349108846 scopus 로고    scopus 로고
    • Projected outlier detection in high-dimensional mixed-attributes data set
    • M. Ye, X. Li, and M.E. Orlowska Projected outlier detection in high-dimensional mixed-attributes data set Expert Systems with Applications 36 3 2009 7104 7113
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 7104-7113
    • Ye, M.1    Li, X.2    Orlowska, M.E.3
  • 39
    • 0242489578 scopus 로고    scopus 로고
    • Distance metric learning by knowledge embedding
    • Y.G. Zhang, C.S. Zhang, and D. Zhang Distance metric learning by knowledge embedding Pattern Recognition 37 2004 161 163
    • (2004) Pattern Recognition , vol.37 , pp. 161-163
    • Zhang, Y.G.1    Zhang, C.S.2    Zhang, D.3
  • 40
    • 67649389394 scopus 로고    scopus 로고
    • A probabilistic relaxation labeling framework for reducing the noise effect in geometric biclustering of gene expression data
    • H. Zhao, K.L. Chan, L.M. Cheng, and H. Yan A probabilistic relaxation labeling framework for reducing the noise effect in geometric biclustering of gene expression data Pattern Recognition 42 11 2009 2578 2588
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2578-2588
    • Zhao, H.1    Chan, K.L.2    Cheng, L.M.3    Yan, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.