메뉴 건너뛰기




Volumn 15, Issue 12, 2011, Pages 2435-2448

Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department

Author keywords

Evolutionary algorithm; Evolutionary fuzzy system; Fuzzy rules extraction; Psychiatric emergency; Subgroup discovery

Indexed keywords

EMERGENCY DEPARTMENTS; EVOLUTIONARY FUZZY SYSTEMS; FUZZY RULE EXTRACTION; FUZZY RULES EXTRACTION; INTERESTING INFORMATION; MULTI OBJECTIVE EVOLUTIONARY ALGORITHMS; PSYCHIATRIC EMERGENCY; SUBGROUP DISCOVERY; TIME OF ARRIVAL;

EID: 81155154250     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-010-0670-3     Document Type: Article
Times cited : (51)

References (62)
  • 3
    • 70349742258 scopus 로고    scopus 로고
    • A transparent classification model using a hybrid soft computing method
    • Ainon R, Lahsasna A, Wah T (2009) A transparent classification model using a hybrid soft computing method. In: AMS, pp 146-151.
    • (2009) AMS , pp. 146-151
    • Ainon, R.1    Lahsasna, A.2    Wah, T.3
  • 4
    • 59649112625 scopus 로고    scopus 로고
    • Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms
    • Alcalá-Fdez J, Alcalá R, Gacto MJ, Herrera F (2009) Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst 160(7): 905-921.
    • (2009) Fuzzy Sets Syst , vol.160 , Issue.7 , pp. 905-921
    • Alcalá-Fdez, J.1    Alcalá, R.2    Gacto, M.J.3    Herrera, F.4
  • 5
    • 55849085431 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining
    • Alhajj R, Kaya M (2008) Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining. J Intell Inform Syst 31(3): 243-264.
    • (2008) J Intell Inform Syst , vol.31 , Issue.3 , pp. 243-264
    • Alhajj, R.1    Kaya, M.2
  • 6
    • 33750322433 scopus 로고    scopus 로고
    • Proceedings of the 17th European conference on machine learning and 10th European conference on principles and practice of knowledge discovery in databases, Springer, Berlin
    • Atzmueller M, Puppe F (2006) SD-Map-a fast algorithm for exhaustive subgroup discovery. In: Proceedings of the 17th European conference on machine learning and 10th European conference on principles and practice of knowledge discovery in databases, vol 4213. Springer, Berlin, pp 6-17.
    • (2006) SD-Map-a Fast Algorithm For Exhaustive Subgroup Discovery , vol.4213 , pp. 6-17
    • Atzmueller, M.1    Puppe, F.2
  • 10
    • 41149124932 scopus 로고    scopus 로고
    • Patterns of mental health service utilization in a general hospital and outpatient mental health facilities: analysis of 365,262 psychiatric consultations
    • Baca-Garcia E, Perez-Rodriguez M, et al (2008) Patterns of mental health service utilization in a general hospital and outpatient mental health facilities: analysis of 365, 262 psychiatric consultations. Eur Arch Psychiatry Clin Neurosci 258(2): 117-123.
    • (2008) Eur Arch Psychiatry Clin Neurosci , vol.258 , Issue.2 , pp. 117-123
    • Baca-Garcia, E.1    Perez-Rodriguez, M.2
  • 11
    • 58049217458 scopus 로고    scopus 로고
    • Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index
    • Botta A, Lazzerini B, Marceloni F, Stefanescu DC (2009) Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Comput 13(5): 437-449.
    • (2009) Soft Comput , vol.13 , Issue.5 , pp. 437-449
    • Botta, A.1    Lazzerini, B.2    Marceloni, F.3    Stefanescu, D.C.4
  • 13
    • 58049213906 scopus 로고    scopus 로고
    • Special issue on genetic fuzzy systems: recent developments and future directions
    • Casillas J, Carse B (2009) Special issue on genetic fuzzy systems: recent developments and future directions. Soft Comput 13(5): 417-418.
    • (2009) Soft Comput , vol.13 , Issue.5 , pp. 417-418
    • Casillas, J.1    Carse, B.2
  • 14
    • 64049084623 scopus 로고    scopus 로고
    • An improved approach to find membership functions and multiple minimum supports in fuzzy data mining
    • Chen CH, Hong TP, Tseng VS (2009a) An improved approach to find membership functions and multiple minimum supports in fuzzy data mining. Expert Syst Appl 36(6): 10, 016-10, 024.
    • (2009) Expert Syst Appl , vol.36 , Issue.6 , pp. 016-024
    • Chen, C.H.1    Hong, T.P.2    Tseng, V.S.3
  • 15
    • 58049202911 scopus 로고    scopus 로고
    • A genetic-fuzzy mining approach for items with multiple minimum supports
    • Chen CH, Hong TP, Tseng VS, Lee CS (2009b) A genetic-fuzzy mining approach for items with multiple minimum supports. Soft Comput 13(5): 521-533.
    • (2009) Soft Comput , vol.13 , Issue.5 , pp. 521-533
    • Chen, C.H.1    Hong, T.P.2    Tseng, V.S.3    Lee, C.S.4
  • 16
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3: 261-283.
    • (1989) Mach Learn , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 19
  • 21
    • 34548285425 scopus 로고    scopus 로고
    • Evolutionary fuzzy rule induction process for subgroup discovery: a case study in marketing
    • del Jesus MJ, González P, Herrera F, Mesonero M (2007a) Evolutionary fuzzy rule induction process for subgroup discovery: a case study in marketing. IEEE Trans Fuzzy Syst 15(4): 578-592.
    • (2007) IEEE Trans Fuzzy Syst , vol.15 , Issue.4 , pp. 578-592
    • del Jesus, M.J.1    González, P.2    Herrera, F.3    Mesonero, M.4
  • 26
    • 45949096079 scopus 로고    scopus 로고
    • Computational intelligence approaches for pattern discovery in biological systems
    • Fogel G (2008) Computational intelligence approaches for pattern discovery in biological systems. Brief Bioinform 9(4): 307-316.
    • (2008) Brief Bioinform , vol.9 , Issue.4 , pp. 307-316
    • Fogel, G.1
  • 27
    • 58049200709 scopus 로고    scopus 로고
    • Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems
    • Gacto MJ, Alcalá R, Herrera F (2009) Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. Soft Comput 13(5): 419-436.
    • (2009) Soft Comput , vol.13 , Issue.5 , pp. 419-436
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 28
    • 0038433995 scopus 로고    scopus 로고
    • Expert-guided subgroup discovery: methodology and application
    • Gamberger D, Lavrac N (2002) Expert-guided subgroup discovery: methodology and application. J Artif Intell Res 17: 501-527.
    • (2002) J Artif Intell Res , vol.17 , pp. 501-527
    • Gamberger, D.1    Lavrac, N.2
  • 29
    • 0038500689 scopus 로고    scopus 로고
    • Active subgroup mining: a case study in coronary heart disease risk group detection
    • Gamberger D, Lavrac N (2003) Active subgroup mining: a case study in coronary heart disease risk group detection. Artif Intell Med 28(1): 27-57.
    • (2003) Artif Intell Med , vol.28 , Issue.1 , pp. 27-57
    • Gamberger, D.1    Lavrac, N.2
  • 30
    • 34948896034 scopus 로고    scopus 로고
    • Clinical data analysis based on iterative subgroup discovery: experiments in brain ischaemia data analysis
    • Gamberger D, Lavrac N, Krstaic A, Krstaic G (2007) Clinical data analysis based on iterative subgroup discovery: experiments in brain ischaemia data analysis. Appl Intell 27(3): 205-217.
    • (2007) Appl Intell , vol.27 , Issue.3 , pp. 205-217
    • Gamberger, D.1    Lavrac, N.2    Krstaic, A.3    Krstaic, G.4
  • 32
    • 68749120539 scopus 로고    scopus 로고
    • On subgroup discovery in numerical domains
    • Grosskreutz H, Rueping S (2009) On subgroup discovery in numerical domains. Data Min Knowl Discov 19(2): 210-216.
    • (2009) Data Min Knowl Discov , vol.19 , Issue.2 , pp. 210-216
    • Grosskreutz, H.1    Rueping, S.2
  • 34
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: taxomony, current research trends and prospects
    • Herrera F (2008) Genetic fuzzy systems: taxomony, current research trends and prospects. Evol Intell 1: 27-46.
    • (2008) Evol Intell , vol.1 , pp. 27-46
    • Herrera, F.1
  • 35
    • 33745136405 scopus 로고    scopus 로고
    • A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership fuctions
    • Hong TP, Chen CH, Wu YL, Lee YC (2006) A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership fuctions. Soft Comput 10(11): 1091-1101.
    • (2006) Soft Comput , vol.10 , Issue.11 , pp. 1091-1101
    • Hong, T.P.1    Chen, C.H.2    Wu, Y.L.3    Lee, Y.C.4
  • 36
    • 26944491093 scopus 로고    scopus 로고
    • Fuzzy methods in machine learning and data mining: status and prospects
    • Hüllermeier E (2005) Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets Syst 156(3): 387-406.
    • (2005) Fuzzy Sets Syst , vol.156 , Issue.3 , pp. 387-406
    • Hüllermeier, E.1
  • 37
    • 50249084601 scopus 로고    scopus 로고
    • Multiobjective genetic fuzzy systems: Review and future research directions
    • Ishibuchi H (2007) Multiobjective genetic fuzzy systems: review and future research directions. In: IEEE international conference on fuzzy systems, pp 913-918.
    • (2007) IEEE International Conference On Fuzzy Systems , pp. 913-918
    • Ishibuchi, H.1
  • 39
    • 33747881454 scopus 로고    scopus 로고
    • APRIORI-SD: adapting association rule learning to subgroup discovery
    • Kavsek B, Lavrac N (2006) APRIORI-SD: adapting association rule learning to subgroup discovery. Appl Artif Intell 20: 543-583.
    • (2006) Appl Artif Intell , vol.20 , pp. 543-583
    • Kavsek, B.1    Lavrac, N.2
  • 40
    • 33244458239 scopus 로고    scopus 로고
    • Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules
    • Kaya M (2006) Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules. Soft Comput 10(7): 578-586.
    • (2006) Soft Comput , vol.10 , Issue.7 , pp. 578-586
    • Kaya, M.1
  • 42
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • American Association for Artificial Intelligence
    • Kloesgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Advances in knowledge discovery and data mining. American Association for Artificial Intelligence, pp 249-271.
    • (1996) Advances In Knowledge Discovery and Data Mining , pp. 249-271
    • Kloesgen, W.1
  • 46
    • 3242791702 scopus 로고    scopus 로고
    • Decision support through subgroup discovery: three case studies and the lessons learned
    • Lavrac N, Cestnik B, Gamberger D, Flach PA (2004a) Decision support through subgroup discovery: three case studies and the lessons learned. Mach Learn 57(1-2): 115-143.
    • (2004) Mach Learn , vol.57 , Issue.1-2 , pp. 115-143
    • Lavrac, N.1    Cestnik, B.2    Gamberger, D.3    Flach, P.A.4
  • 53
    • 57749184981 scopus 로고    scopus 로고
    • A subgroup discovery approach for scrutinizing blood glucose management guidelines by the identification of hyperglycemia determinants in ICU patients
    • Nannings B, Bosnian RJ, Abu-Hanna A (2009) A subgroup discovery approach for scrutinizing blood glucose management guidelines by the identification of hyperglycemia determinants in ICU patients. Methods Inform Med 47(6): 480-488.
    • (2009) Methods Inform Med , vol.47 , Issue.6 , pp. 480-488
    • Nannings, B.1    Bosnian, R.J.2    Abu-Hanna, A.3
  • 55
    • 56349162269 scopus 로고    scopus 로고
    • Evolutionary algorithm for subgroup discovery in e-learning: a practical application using Moodle data
    • Romero C, González P, Ventura S, del Jesus MJ, Herrera F (2009) Evolutionary algorithm for subgroup discovery in e-learning: a practical application using Moodle data. Expert Syst Appl 36: 1632-1644.
    • (2009) Expert Syst Appl , vol.36 , pp. 1632-1644
    • Romero, C.1    González, P.2    Ventura, S.3    del Jesus, M.J.4    Herrera, F.5
  • 56
    • 47149090982 scopus 로고    scopus 로고
    • Analysis of mass spectrometry data of cerebral stroke samples: an evolutionary computation approach to resolve and quantify peptide peaks
    • ValdTs J, Barton A, AS Haqqani A (2008) Analysis of mass spectrometry data of cerebral stroke samples: an evolutionary computation approach to resolve and quantify peptide peaks. Genet Program Evol Mach 9(3): 257-274.
    • (2008) Genet Program Evol Mach , vol.9 , Issue.3 , pp. 257-274
    • Valdts, J.1    Barton, A.2    As Haqqani, A.3
  • 58
    • 67349092198 scopus 로고    scopus 로고
    • Soft computing in medicine
    • Yardimci A (2009) Soft computing in medicine. Appl Soft Comput J 9(3): 1029-1043.
    • (2009) Appl Soft Comput J , vol.9 , Issue.3 , pp. 1029-1043
    • Yardimci, A.1
  • 59
    • 42249092515 scopus 로고    scopus 로고
    • HAL-based evolutionary inference for pattern induction from psychiatry web resources
    • Yu L, Wu C, Yeh J, Jang F (2008) HAL-based evolutionary inference for pattern induction from psychiatry web resources. IEEE Trans Evol Comput 12(2): 160-170.
    • (2008) IEEE Trans Evol Comput , vol.12 , Issue.2 , pp. 160-170
    • Yu, L.1    Wu, C.2    Yeh, J.3    Jang, F.4
  • 60
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its applications to approximate reasoning. Parts I, II, III
    • Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Parts I, II, III. Information Science 8-9: 199-249, 301-357, 43-80.
    • (1975) Information Science , vol.8-9
    • Zadeh, L.A.1
  • 61
    • 32144454875 scopus 로고    scopus 로고
    • Propositionalization-based relational subgroup discovery with RSD
    • Zelezny F, Lavrac N (2006) Propositionalization-based relational subgroup discovery with RSD. Mach Learn 62: 33-63.
    • (2006) Mach Learn , vol.62 , pp. 33-63
    • Zelezny, F.1    Lavrac, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.