메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Multiobjective genetic fuzzy systems: Review and future research directions

Author keywords

[No Author keywords available]

Indexed keywords

DESIGN OF EXPERIMENTS; EVOLUTIONARY ALGORITHMS; FUZZY LOGIC; MULTIOBJECTIVE OPTIMIZATION;

EID: 50249084601     PISSN: 10987584     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZY.2007.4295487     Document Type: Conference Paper
Times cited : (77)

References (107)
  • 1
    • 0026989504 scopus 로고
    • Fuzzy systems as universal approximators
    • B. Kosko, "Fuzzy systems as universal approximators," Proc. of FUZZ-IEEE 1992, 1153-1162.
    • (1992) Proc. of FUZZ-IEEE , pp. 1153-1162
    • Kosko, B.1
  • 2
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • L. X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Trans. on Neural Networks 3 (5) 807-814, 1992.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 3
    • 0029270928 scopus 로고
    • Fuzzy-logic systems for engineering - A tutorial
    • J. M. Mendel, "Fuzzy-logic systems for engineering - A tutorial," Proceedings of IEEE 83 (3) 345-377, 1995.
    • (1995) Proceedings of IEEE , vol.83 , Issue.3 , pp. 345-377
    • Mendel, J.M.1
  • 4
    • 0024866495 scopus 로고
    • On the approximate realization of continuous-mappings by neural networks
    • K. Funahashi, "On the approximate realization of continuous-mappings by neural networks," Neural Networks 2 (3) 183-192, 1989.
    • (1989) Neural Networks , vol.2 , Issue.3 , pp. 183-192
    • Funahashi, K.1
  • 5
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks 2 (5) 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 6
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Networks A (2) 251-257, 1991.
    • (1991) Neural Networks A , vol.2 , pp. 251-257
    • Hornik, K.1
  • 9
    • 33748894279 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Status, critical considerations and future directions
    • F. Herrera, "Genetic fuzzy systems: Status, critical considerations and future directions," International Journal of Computational Intelligence Research 1 (1) 59-67, 2005.
    • (2005) International Journal of Computational Intelligence Research , vol.1 , Issue.1 , pp. 59-67
    • Herrera, F.1
  • 10
    • 0001418767 scopus 로고
    • The fuzzy classifier system: A classifier system for continuously varying variables
    • M. Valenzuela-Rendon, "The fuzzy classifier system: A classifier system for continuously varying variables," Proc. of 4th ICGA, 346-353, 1991.
    • (1991) Proc. of 4th ICGA , pp. 346-353
    • Valenzuela-Rendon, M.1
  • 11
    • 0002191257 scopus 로고
    • Design of an adaptive fuzzy logic controller using a genetic algorithm
    • C. L. Karr, "Design of an adaptive fuzzy logic controller using a genetic algorithm," Proc. of 4th ICGA, 450-457, 1991.
    • (1991) Proc. of 4th ICGA , pp. 450-457
    • Karr, C.L.1
  • 12
    • 0002530293 scopus 로고
    • Fuzzy logic synthesis with genetic algorithms
    • P. Thrift, "Fuzzy logic synthesis with genetic algorithms," Proc. of 4th ICGA, 509-513, 1991.
    • (1991) Proc. of 4th ICGA , pp. 509-513
    • Thrift, P.1
  • 13
    • 0002895332 scopus 로고
    • A new approach to fuzzy classifier systems
    • A. Parodi and P. Bonelli, "A new approach to fuzzy classifier systems," Proc. of 5th ICGA, 223-230, 1993.
    • (1993) Proc. of 5th ICGA , pp. 223-230
    • Parodi, A.1    Bonelli, P.2
  • 14
    • 0002406910 scopus 로고
    • Fuzzy network synthesis with genetic algorithms
    • D. S. Feldman, "Fuzzy network synthesis with genetic algorithms," Proc. of 5th ICGA, 312-317, 1993.
    • (1993) Proc. of 5th ICGA , pp. 312-317
    • Feldman, D.S.1
  • 15
    • 0027539712 scopus 로고
    • Fuzzy control of pH using genetic algorithms
    • C. L. Karr and E. J. Gentry, "Fuzzy control of pH using genetic algorithms," IEEE Trans. on Fuzzy Systems 1 (1) 46-53, 1993.
    • (1993) IEEE Trans. on Fuzzy Systems , vol.1 , Issue.1 , pp. 46-53
    • Karr, C.L.1    Gentry, E.J.2
  • 16
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • S. Horikawa, T. Furuhashi, and Y. Uchikawa, "On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm," IEEE Trans. on Neural Networks 3 (5) 801-806, 1992.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 17
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J. -S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. on Systems, Man, and Cybernetics 23 (3) 665-685, 1993.
    • (1993) IEEE Trans. on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 21
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • J. Yen, L. Wang, and G. W. Gillespie, "Improving the interpretability of TSK fuzzy models by combining global learning and local learning," IEEE Trans. on Fuzzy Systems 6 (4) 530-537, 1998.
    • (1998) IEEE Trans. on Fuzzy Systems , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, G.W.3
  • 23
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • D. Nauck and R. Kruse, "Obtaining interpretable fuzzy classification rules from medical data," Artificial Intelligence in Medicine 16 (2) 149-169, 1999.
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 24
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • Y. Jin, "Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement," IEEE Trans. on Fuzzy Systems 8 (2) 212-221, 2000.
    • (2000) IEEE Trans. on Fuzzy Systems , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 25
    • 0034294243 scopus 로고    scopus 로고
    • GA-based modeling and classification: Complexity and performance
    • M. Setnes and H. Roubos, "GA-based modeling and classification: Complexity and performance," IEEE Trans. on Fuzzy Systems 8 (5) 509-522, 2000.
    • (2000) IEEE Trans. on Fuzzy Systems , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 26
    • 0035897955 scopus 로고    scopus 로고
    • Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
    • L. Castillo, A. Gonzalez, and R. Perez, "Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm," Fuzzy Sets and Systems 120 (2) 309-321, 2001.
    • (2001) Fuzzy Sets and Systems , vol.120 , Issue.2 , pp. 309-321
    • Castillo, L.1    Gonzalez, A.2    Perez, R.3
  • 27
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Trans on Fuzzy Systems 9 (4) 516-524, 2001.
    • (2001) IEEE Trans on Fuzzy Systems , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 28
    • 0036435523 scopus 로고    scopus 로고
    • Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization
    • J. Abonyi, J. A. Roubos, and F. Szeifert, "Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization," International Journal of Approximate Reasoning 32 (1)1-21, 2003.
    • (2003) International Journal of Approximate Reasoning , vol.32 , Issue.1 , pp. 1-21
    • Abonyi, J.1    Roubos, J.A.2    Szeifert, F.3
  • 30
    • 0037230859 scopus 로고    scopus 로고
    • Finding fuzzy classification rules using data mining techniques
    • Y. C. Hu, R. S. Chen, and G. H. Tzeng, "Finding fuzzy classification rules using data mining techniques," Pattern Recognition Letters 24 (1-3)509-519, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 509-519
    • Hu, Y.C.1    Chen, R.S.2    Tzeng, G.H.3
  • 31
    • 14644430392 scopus 로고    scopus 로고
    • Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction
    • J. Casillas, O. Cordon, M. J. del Jesus, and F. Herrera, "Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction," IEEE Trans. on Fuzzy Systems 13 (1)13-29, 2005.
    • (2005) IEEE Trans. on Fuzzy Systems , vol.13 , Issue.1 , pp. 13-29
    • Casillas, J.1    Cordon, O.2    del Jesus, M.J.3    Herrera, F.4
  • 32
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, "Selecting fuzzy if-then rules for classification problems using genetic algorithms," IEEE Trans. on Fuzzy Systems 3 (3)260-270, 1995.
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 33
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • H. Ishibuchi, T. Murata, and I. B. Turksen, "Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems," Fuzzy Sets and Systems 89 (2) 135-150, 1997.
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.2 , pp. 135-150
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 34
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective geneticsbased machine learning for linguistic rule extraction
    • H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective geneticsbased machine learning for linguistic rule extraction," Information Sciences 136 (1-4) 109-133, 2001.
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 39
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Trans. on Evolutionary Computation 3 (4) 257-271, 1999.
    • (1999) IEEE Trans. on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 40
    • 0004140075 scopus 로고    scopus 로고
    • SPEA2: Improving the strength Pareto evolutionary algorithms,
    • 103, Computer Engineering and Networks Laboratory (TIK, Swiss Federal Institute of Technology (ETH) Zurich
    • E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the strength Pareto evolutionary algorithms," TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 2001.
    • (2001) TIK-Report
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 42
    • 0037597549 scopus 로고    scopus 로고
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena eds, Springer
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena (eds.), Interpretability Issues in Fuzzy Modeling, Springer, 2003.
    • (2003) Interpretability Issues in Fuzzy Modeling
  • 43
    • 3543069982 scopus 로고    scopus 로고
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena eds, Springer
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena (eds.), Accuracy Improvements in Linguistic Fuzzy Modeling, Springer, 2003.
    • (2003) Accuracy Improvements in Linguistic Fuzzy Modeling
  • 46
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets and Systems 141 (1) 59-88, 2004.
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 47
    • 33645386802 scopus 로고    scopus 로고
    • Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems
    • H. Ishibuchi and S. Namba, "Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems," LNCS 3242.-PPSN VIII, 1123-1132, 2004.
    • (2004) LNCS 3242.-PPSN VIII , pp. 1123-1132
    • Ishibuchi, H.1    Namba, S.2
  • 52
    • 0033317446 scopus 로고    scopus 로고
    • MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach
    • O. Cordon, M. J. del Jesus, F. Herrera, and M. Lozano, "MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach," International Journal of Intelligent Systems 14(11)1123-1153, 1999.
    • (1999) International Journal of Intelligent Systems , vol.14 , Issue.11 , pp. 1123-1153
    • Cordon, O.1    del Jesus, M.J.2    Herrera, F.3    Lozano, M.4
  • 53
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: A genetic learning system based on an iterative approach
    • A. Gonzalez and R. Perez, "SLAVE: A genetic learning system based on an iterative approach," IEEE Trans on Fuzzy Systems 7 (2) 176-191, 1999.
    • (1999) IEEE Trans on Fuzzy Systems , vol.7 , Issue.2 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 55
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • H. Ishibuchi and Y. Nojima, "Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning," International Journal of Approximate Reasoning 44 (1)4-31, 2007.
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 57
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • H. Wang, S. Kwong, Y. Jin, W. Wei, and K. F. Man, "Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction," Fuzzy Sets and Systems 149 (1) 149-186, 2005.
    • (2005) Fuzzy Sets and Systems , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.F.5
  • 58
    • 0042782983 scopus 로고    scopus 로고
    • Bounding the effect of noise in multiobjective learning classifier systems
    • X. Llora and D. E. Goldberg, "Bounding the effect of noise in multiobjective learning classifier systems," Evolutionary Computation 11 (3)278-297, 2003.
    • (2003) Evolutionary Computation , vol.11 , Issue.3 , pp. 278-297
    • Llora, X.1    Goldberg, D.E.2
  • 59
    • 0001371923 scopus 로고    scopus 로고
    • Fast discovery of association rules
    • U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy eds, AAAI Press, Menlo Park
    • R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, "Fast discovery of association rules," in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.), Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, 307-328, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 307-328
    • Agrawal, R.1    Mannila, H.2    Srikant, R.3    Toivonen, H.4    Verkamo, A.I.5
  • 62
  • 63
    • 24344474261 scopus 로고    scopus 로고
    • Developments on a multi-objective metaheuristic (MOMH) algorithm for finding interesting sets of classification rules
    • B. de la Iglesia, A. Reynolds, and V. J. Rayward-Smith, "Developments on a multi-objective metaheuristic (MOMH) algorithm for finding interesting sets of classification rules," LNCS 3410: EMO 2005, 826-840.
    • (2005) LNCS , vol.3410 , Issue.EMO , pp. 826-840
    • de la Iglesia, B.1    Reynolds, A.2    Rayward-Smith, V.J.3
  • 64
    • 34548765852 scopus 로고    scopus 로고
    • Rule induction using multi-objective metaheuristics: Encouraging rule diversity
    • A. Reynolds and B. de la Iglesia, "Rule induction using multi-objective metaheuristics: Encouraging rule diversity," Proc. of IJCNN 2006, 6375-6382.
    • Proc. of IJCNN 2006 , pp. 6375-6382
    • Reynolds, A.1    de la Iglesia, B.2
  • 65
    • 2442699339 scopus 로고    scopus 로고
    • Multi-objective rule mining using genetic algorithms
    • A. Ghosh and B. T. Nath, "Multi-objective rule mining using genetic algorithms," Information Sciences 163 (1-3) 123-133, 2004.
    • (2004) Information Sciences , vol.163 , Issue.1-3 , pp. 123-133
    • Ghosh, A.1    Nath, B.T.2
  • 66
    • 33244458239 scopus 로고    scopus 로고
    • Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules
    • M. Kaya, "Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules," Soft Computing 10 (7) 578-586, 2006.
    • (2006) Soft Computing , vol.10 , Issue.7 , pp. 578-586
    • Kaya, M.1
  • 68
    • 34548799281 scopus 로고    scopus 로고
    • Relation between Pareto-optimal fuzzy rules and Pareto-optimal fuzzy rule sets
    • H. Ishibuchi, I. Kuwajima, and Y. Nojima, "Relation between Pareto-optimal fuzzy rules and Pareto-optimal fuzzy rule sets," Proc. of 2007 IEEE MCDM, 4249.
    • Proc. of 2007 IEEE MCDM , pp. 4249
    • Ishibuchi, H.1    Kuwajima, I.2    Nojima, Y.3
  • 70
    • 0033676397 scopus 로고    scopus 로고
    • A multiobjective evolutionary setting for feature selection and acommonality-based crossover operator
    • C. Emmanouilidis, A. Hunter, and J. MacIntyre, "A multiobjective evolutionary setting for feature selection and acommonality-based crossover operator," Proc. of CEC 2000, 309-316.
    • Proc. of CEC 2000 , pp. 309-316
    • Emmanouilidis, C.1    Hunter, A.2    MacIntyre, J.3
  • 72
    • 18044365477 scopus 로고    scopus 로고
    • Feature selection using multi-objective genetic algorithms for handwritten digit recognition
    • L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, "Feature selection using multi-objective genetic algorithms for handwritten digit recognition," Proc. of ICPR 2002, 568-571.
    • Proc. of ICPR 2002 , pp. 568-571
    • Oliveira, L.S.1    Sabourin, R.2    Bortolozzi, F.3    Suen, C.Y.4
  • 73
    • 50249181509 scopus 로고    scopus 로고
    • A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems
    • O. Cordon, M. J. D. Jesus, F. Herrera, L. Magdalena, and P. Villar, "A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems," 79-99 in [42].
    • 79-99 in [42]
    • Cordon, O.1    Jesus, M.J.D.2    Herrera, F.3    Magdalena, L.4    Villar, P.5
  • 75
    • 35048865418 scopus 로고    scopus 로고
    • Evolutionary multiobjective clustering
    • J. Handl and J. Knowles, "Evolutionary multiobjective clustering," LNCS 3242 : PPSN VIII, 1081-1091, 2004.
    • (2004) LNCS 3242 : PPSN VIII , pp. 1081-1091
    • Handl, J.1    Knowles, J.2
  • 76
    • 27144470695 scopus 로고    scopus 로고
    • Multiobjective clustering around medoids
    • J. Handl and J. Knowles, "Multiobjective clustering around medoids," Proc. of CEC 2005, 632-639.
    • Proc. of CEC 2005 , pp. 632-639
    • Handl, J.1    Knowles, J.2
  • 77
    • 27144451817 scopus 로고    scopus 로고
    • Improving the scalability of multiobjective clustering
    • J. Handl and J. Knowles, "Improving the scalability of multiobjective clustering," Proc CEC 2005, 2372-2379.
    • (2005) Proc CEC , pp. 2372-2379
    • Handl, J.1    Knowles, J.2
  • 78
    • 24344485715 scopus 로고    scopus 로고
    • Exploiting the trade-off - The benefits of multiple objectives in data clustering
    • J. Handl and J. Knowles, "Exploiting the trade-off - The benefits of multiple objectives in data clustering," LNCS 3410: EMO 2005, 547-560.
    • (2005) LNCS , vol.3410 , Issue.EMO , pp. 547-560
    • Handl, J.1    Knowles, J.2
  • 79
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Machine Learning 36(1-2) 105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 80
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization," Machine Learning 40 (2) 139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 81
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning 24 (2) 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 82
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and System Sciences 55 (1) 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 83
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
    • H. A. Abbass, "Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization," Proc. of CEC 2003, 2074-2080.
    • Proc. of CEC 2003 , pp. 2074-2080
    • Abbass, H.A.1
  • 84
    • 32144456690 scopus 로고    scopus 로고
    • DIVACE: Diverse and accurate ensemble learning algorithm
    • A. Chandra and X. Yao, "DIVACE: Diverse and accurate ensemble learning algorithm," UVCS 3177: IDEAL 2004, 619-625.
    • UVCS 3177: IDEAL 2004 , pp. 619-625
    • Chandra, A.1    Yao, X.2
  • 85
    • 84887000710 scopus 로고    scopus 로고
    • Evolutionary framework for the construction of diverse hybrid ensemble
    • A. Chandra and X. Yao, "Evolutionary framework for the construction of diverse hybrid ensemble," Proc. of ESANN 2005, 253-258.
    • Proc. of ESANN 2005 , pp. 253-258
    • Chandra, A.1    Yao, X.2
  • 86
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • Y. Jin, T. Okabe, and B. Sendhoff, "Neural network regularization and ensembling using multi-objective evolutionary algorithms," Proc of CEC2004, 1-8.
    • (2004) Proc of CEC , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 87
    • 35248819821 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers
    • H. Ishibuchi and T. Yamamoto, "Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers," LNCS 2723: GECCO 2003, 1077-1088.
    • LNCS 2723: GECCO 2003 , pp. 1077-1088
    • Ishibuchi, H.1    Yamamoto, T.2
  • 88
    • 78149347898 scopus 로고    scopus 로고
    • Feature selection for ensembles: A hierarchical multi-objective genetic algorithm approach
    • L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, "Feature selection for ensembles: A hierarchical multi-objective genetic algorithm approach," Proc of ICDAR 2003, 676-680.
    • Proc of ICDAR 2003 , pp. 676-680
    • Oliveira, L.S.1    Sabourin, R.2    Bortolozzi, F.3    Suen, C.Y.4
  • 89
    • 24344486891 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms to create ensemble of classifiers
    • L. S. Oliveira, M. Morita, and R. Sabourin, "Multi-objective genetic algorithms to create ensemble of classifiers," UVCS 3410: EMO 2005, 592-606.
    • (2005) UVCS , vol.3410 , Issue.EMO , pp. 592-606
    • Oliveira, L.S.1    Morita, M.2    Sabourin, R.3
  • 90
    • 0033169217 scopus 로고    scopus 로고
    • Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curve
    • M. A. Kupinski and M. A. Anastasio, "Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curve," IEEE Trans. on Medical Imaging 18 (8) 675-685, 1999.
    • (1999) IEEE Trans. on Medical Imaging , vol.18 , Issue.8 , pp. 675-685
    • Kupinski, M.A.1    Anastasio, M.A.2
  • 91
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez, and A. F. Diaz, "Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation," IEEE Trans. on Neural Networks 14 (6) 1478-1495, 2003.
    • (2003) IEEE Trans. on Neural Networks , vol.14 , Issue.6 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernandez, F.J.5    Diaz, A.F.6
  • 92
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up back-propagation using multiobjective evolutionary algorithms
    • H. A. Abbass, "Speeding up back-propagation using multiobjective evolutionary algorithms," Neural Computation 15 (11) 2705-2726, 2003.
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2705-2726
    • Abbass, H.A.1
  • 93
    • 0001629980 scopus 로고    scopus 로고
    • Multiobjective genetic programming: A nonlinear system identification application
    • K. Rodriguez-Vazquez, C. M. Fonseca, and P. J. Fleming, "Multiobjective genetic programming: A nonlinear system identification application," Proc. of GP-97LB, 207-212, 1997.
    • (1997) Proc. of GP-97LB , pp. 207-212
    • Rodriguez-Vazquez, K.1    Fonseca, C.M.2    Fleming, P.J.3
  • 94
    • 0034863660 scopus 로고    scopus 로고
    • Multiobjective genetic programming: Reducing bloat using SPEA2
    • S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, "Multiobjective genetic programming: Reducing bloat using SPEA2," Proc of CEC 2001, 536-543.
    • Proc of CEC 2001 , pp. 536-543
    • Bleuler, S.1    Brack, M.2    Thiele, L.3    Zitzler, E.4
  • 95
    • 84944325369 scopus 로고    scopus 로고
    • Evolutionary learning of boolean queries by multiobjective genetic programming
    • O. Cordon, E. Herrera-Viedma, and M. Luque, "Evolutionary learning of boolean queries by multiobjective genetic programming," UVCS 2439: PPSN VII, 710-719, 2002.
    • (2002) UVCS 2439: PPSN VII , pp. 710-719
    • Cordon, O.1    Herrera-Viedma, E.2    Luque, M.3
  • 96
    • 33750228993 scopus 로고    scopus 로고
    • Multiobjective genetic programming for natural language parsing and tagging
    • L. Araujo, "Multiobjective genetic programming for natural language parsing and tagging," LNCS 4193: PPSNIX, 433-442, 2006.
    • (2006) LNCS 4193: PPSNIX , pp. 433-442
    • Araujo, L.1
  • 97
    • 37249050410 scopus 로고    scopus 로고
    • Rule induction for classification using multi-objective genetic programming
    • A. P. Reynolds and B. de la Iglesia, "Rule induction for classification using multi-objective genetic programming," LNCS4403: EMO 2007, 516-530.
    • LNCS4403: EMO 2007 , pp. 516-530
    • Reynolds, A.P.1    de la Iglesia, B.2
  • 98
    • 33750699931 scopus 로고    scopus 로고
    • Finding simple fuzzy classification systems with high interpretability through multiobjective rule selection
    • H. Ishibuchi, Y. Nojima, and I. Kuwajima, "Finding simple fuzzy classification systems with high interpretability through multiobjective rule selection," UVCS 4252: KES 2006, 86-93.
    • (2006) UVCS , vol.4252 , Issue.KES , pp. 86-93
    • Ishibuchi, H.1    Nojima, Y.2    Kuwajima, I.3
  • 99
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • S. Guillaume, "Designing fuzzy inference systems from data: An interpretability-oriented review," IEEE Trans. on Fuzzy Systems 9 (3) 426-443, 2001.
    • (2001) IEEE Trans. on Fuzzy Systems , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 100
    • 11244318202 scopus 로고    scopus 로고
    • Interpretability issues in data-based learning of fuzzy systems
    • R. Mikut, J. Jakel, and L. Groll, "Interpretability issues in data-based learning of fuzzy systems," Fuzzy Sets and Systems 150 (2) 179-197, 2005.
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 179-197
    • Mikut, R.1    Jakel, J.2    Groll, L.3
  • 101
    • 2642512286 scopus 로고    scopus 로고
    • On the computational efficiency of multiple objective metaheuristics: The knapsack problem case study
    • A. Jaszkiewicz, "On the computational efficiency of multiple objective metaheuristics: The knapsack problem case study," European Journal of Operational Research 158 (2)418433, 2004.
    • (2004) European Journal of Operational Research , vol.158 , Issue.2 , pp. 418433
    • Jaszkiewicz, A.1
  • 102
    • 27144473875 scopus 로고    scopus 로고
    • Evolutionary many-objective optimization: Many once or one many?
    • E. J. Hughes, "Evolutionary many-objective optimization: many once or one many?" Proc of CEC 2005, 222-227.
    • Proc of CEC 2005 , pp. 222-227
    • Hughes, E.J.1
  • 104
    • 24344432885 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations
    • Y. Jin, B. Sendhoff, and E. Koerner, "Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations," LNCS 3410: EMO 2005, 752-766.
    • (2005) LNCS , vol.3410 , Issue.EMO , pp. 752-766
    • Jin, Y.1    Sendhoff, B.2    Koerner, E.3
  • 105
    • 33750253048 scopus 로고    scopus 로고
    • Reference point based multi-objective optimization using evolutionary algorithms
    • K. Deb and J. Sundar, "Reference point based multi-objective optimization using evolutionary algorithms," Proc. of GECCO 2006, 635-642.
    • Proc. of GECCO 2006 , pp. 635-642
    • Deb, K.1    Sundar, J.2
  • 106
    • 34548815331 scopus 로고    scopus 로고
    • Optimization of scalarizing functions through evolutionary multiobjective optimization
    • in press
    • H. Ishibuchi and Y. Nojima, "Optimization of scalarizing functions through evolutionary multiobjective optimization," Proc. of EMO 2007 (in press).
    • Proc. of EMO 2007
    • Ishibuchi, H.1    Nojima, Y.2
  • 107
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • J. R. Cano, F. Herrera, and M. Lozano, "Stratification for scaling up evolutionary prototype selection," Pattern Recognition Letters 26 (7) 953-963, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.