-
1
-
-
0001195789
-
Classification into two multivariate normal distributions with different covariance matrices
-
Anderson T.W., Bahadur R.R. Classification into two multivariate normal distributions with different covariance matrices. Ann Math Statist 1962, 33:420-431.
-
(1962)
Ann Math Statist
, vol.33
, pp. 420-431
-
-
Anderson, T.W.1
Bahadur, R.R.2
-
2
-
-
33750367353
-
-
Combining multiple k-nearest neighbor classifiers using different distance functions. Yang ZR et al. (Eds.) IDEAL 2004, LNCS 3177;
-
Bao Y, Ishii N, Du X. Combining multiple k-nearest neighbor classifiers using different distance functions. Yang ZR et al. (Eds.) IDEAL 2004, LNCS 3177; 2004. p. 634-41.
-
(2004)
, pp. 634-41
-
-
Bao, Y.1
Ishii, N.2
Du, X.3
-
3
-
-
33744958288
-
Combining nearest neighbor classifiers through multiple feature subsets
-
Bay S.D. Combining nearest neighbor classifiers through multiple feature subsets. Intell Data Anal 1999, 3(3):191-209.
-
(1999)
Intell Data Anal
, vol.3
, Issue.3
, pp. 191-209
-
-
Bay, S.D.1
-
4
-
-
68049109165
-
Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts
-
Bezabeh T., Somorjai R., Dolenko B., Bryskina N., Levin B., Bernstein C.N., et al. Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed 2009, 22(6):593-600.
-
(2009)
NMR Biomed
, vol.22
, Issue.6
, pp. 593-600
-
-
Bezabeh, T.1
Somorjai, R.2
Dolenko, B.3
Bryskina, N.4
Levin, B.5
Bernstein, C.N.6
-
5
-
-
0035575921
-
Nearest prototype classifier design: an experimental study
-
Bezdek J.C., Kuncheva L.I. Nearest prototype classifier design: an experimental study. Int J Intell Syst 2001, 16(12):1445-1473.
-
(2001)
Int J Intell Syst
, vol.16
, Issue.12
, pp. 1445-1473
-
-
Bezdek, J.C.1
Kuncheva, L.I.2
-
7
-
-
33746218126
-
On a transvariation based measure of group separability
-
Calò D.G. On a transvariation based measure of group separability. J Classif 2006, 23(1):143-167.
-
(2006)
J Classif
, vol.23
, Issue.1
, pp. 143-167
-
-
Calò, D.G.1
-
8
-
-
77957903367
-
Enhancing the classification accuracy by scatter-search ensemble approach
-
Chen Sh-Ch., Lin S.h.-W., Chou Sh-Y Enhancing the classification accuracy by scatter-search ensemble approach. Appl Soft Comput 2011, 11:1021-1028.
-
(2011)
Appl Soft Comput
, vol.11
, pp. 1021-1028
-
-
Chen, S.-C.1
Lin, S.-W.2
Chou, S.-Y.3
-
9
-
-
84926662675
-
Nearest neighbor instance classification
-
Cover T.M., Hart P.E. Nearest neighbor instance classification. Trans IEEE Inform Theory 1967, IT-13:21-27.
-
(1967)
Trans IEEE Inform Theory
, vol.IT13
, pp. 21-27
-
-
Cover, T.M.1
Hart, P.E.2
-
10
-
-
0031530380
-
The proximity of an individual to a population with applications in discriminant analysis
-
Cuadras C.M., Fortiana J., Oliva F. The proximity of an individual to a population with applications in discriminant analysis. J Classif 1997, 14:117-136.
-
(1997)
J Classif
, vol.14
, pp. 117-136
-
-
Cuadras, C.M.1
Fortiana, J.2
Oliva, F.3
-
12
-
-
80955178681
-
-
Multi- and megavariate data analysis - principles and applications. Umetrics AB;
-
Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. Multi- and megavariate data analysis - principles and applications. Umetrics AB; 2001.
-
(2001)
-
-
Eriksson, L.1
Johansson, E.2
Kettaneh-Wold, N.3
Wold, S.4
-
13
-
-
80955180827
-
Non supervised classification tools adapted to supervised classification. NATO ASI series
-
Springer-Verlag, Berlin (Heidelberg)
-
Fages R., Terrenoire M., Tounissoux D., Zighed A. Non supervised classification tools adapted to supervised classification. NATO ASI series. Instance recognition theory and applications 1987, vol. F30:57-62. Springer-Verlag, Berlin (Heidelberg).
-
(1987)
Instance recognition theory and applications
, vol.F30
, pp. 57-62
-
-
Fages, R.1
Terrenoire, M.2
Tounissoux, D.3
Zighed, A.4
-
14
-
-
84860224772
-
-
UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science;
-
Frank A, Asuncion A. UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science; 2010. http://archive.ics.uci.edu/ml.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
15
-
-
0000952525
-
Classification: oldtimers and newcomers
-
Frank I.E., Friedman J.H. Classification: oldtimers and newcomers. J Chemometr 1989, 3:463-475.
-
(1989)
J Chemometr
, vol.3
, pp. 463-475
-
-
Frank, I.E.1
Friedman, J.H.2
-
16
-
-
0016102310
-
A projection pursuit algorithm for exploratory data analysis
-
Friedman J.H., Tukey J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans Comput 1974, C23(9):881-890.
-
(1974)
IEEE Trans Comput
, vol.C23
, Issue.9
, pp. 881-890
-
-
Friedman, J.H.1
Tukey, J.W.2
-
17
-
-
33750697973
-
Recent advances in predictive (machine) learning
-
Friedman J.H. Recent advances in predictive (machine) learning. J Classif 2006, 23:175-197.
-
(2006)
J Classif
, vol.23
, pp. 175-197
-
-
Friedman, J.H.1
-
18
-
-
84887916087
-
Regularized discriminant analysis
-
Friedman J.H. Regularized discriminant analysis. J Am Stat Assoc 1989, 84:165-175.
-
(1989)
J Am Stat Assoc
, vol.84
, pp. 165-175
-
-
Friedman, J.H.1
-
20
-
-
0020153865
-
A non-parametric two-dimensional display for classification
-
Fukunaga K., Mantock J.M. A non-parametric two-dimensional display for classification. Trans IEEE Instance Anal Mach Intell 1982, PAMI-4:427-436.
-
(1982)
Trans IEEE Instance Anal Mach Intell
, vol.PAMI 4
, pp. 427-436
-
-
Fukunaga, K.1
Mantock, J.M.2
-
22
-
-
2942516120
-
Enhancing prototype reduction schemes with recursion: a method applicable for " large" data sets
-
Kim S.-W., Oommen B.J. Enhancing prototype reduction schemes with recursion: a method applicable for " large" data sets. IEEE Trans Syst Man Cybern - Part B: Cybern 2004, 34(3):1384-1897.
-
(2004)
IEEE Trans Syst Man Cybern - Part B: Cybern
, vol.34
, Issue.3
, pp. 1384-1897
-
-
Kim, S.-W.1
Oommen, B.J.2
-
24
-
-
33745421067
-
Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
-
Lozano M., Sotoca J.M., Sánchez J.S., Pla F., Pekalska E., Duin R.P.W. Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. Pattern Recognit 2006, 39:1827-1838.
-
(2006)
Pattern Recognit
, vol.39
, pp. 1827-1838
-
-
Lozano, M.1
Sotoca, J.M.2
Sánchez, J.S.3
Pla, F.4
Pekalska, E.5
Duin, R.P.W.6
-
26
-
-
3042526262
-
Linear discriminant analysis and transvariation
-
Montanari A. Linear discriminant analysis and transvariation. J Classif 2004, 21(1):71-88.
-
(2004)
J Classif
, vol.21
, Issue.1
, pp. 71-88
-
-
Montanari, A.1
-
27
-
-
0000776754
-
On the problem of the most efficient tests of statistical hypotheses
-
Neyman J., Pearson E. On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc Lond Ser A 1933, 231:289-337.
-
(1933)
Philos Trans R Soc Lond Ser A
, vol.231
, pp. 289-337
-
-
Neyman, J.1
Pearson, E.2
-
28
-
-
0031926888
-
Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra
-
Nikulin A.E., Dolenko B., Bezabeh T., Somorjai R.L. Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra. NMR Biomed 1998, 11:209-217.
-
(1998)
NMR Biomed
, vol.11
, pp. 209-217
-
-
Nikulin, A.E.1
Dolenko, B.2
Bezabeh, T.3
Somorjai, R.L.4
-
29
-
-
0348041666
-
Dissimilarity-based classification of spectra: computational issues
-
Páclik P., Duin R.P.W. Dissimilarity-based classification of spectra: computational issues. Real Time Imag 2003, 9(4):237-244.
-
(2003)
Real Time Imag
, vol.9
, Issue.4
, pp. 237-244
-
-
Páclik, P.1
Duin, R.P.W.2
-
30
-
-
84860224776
-
-
Classifying spectral data using relational representation. Spectral imaging workshop, Graz, Austria;
-
Páclik P, Duin RPW. Classifying spectral data using relational representation. Spectral imaging workshop, Graz, Austria; 2003.
-
(2003)
-
-
Páclik, P.1
Duin, R.P.W.2
-
31
-
-
0034319192
-
Class-dependent weighted dissimilarity measure for nearest neighbor classification problems
-
Paredes R., Vidal E.A. Class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Pattern Recognit Lett 2000, 21:1027-1036.
-
(2000)
Pattern Recognit Lett
, vol.21
, pp. 1027-1036
-
-
Paredes, R.1
Vidal, E.A.2
-
32
-
-
27744468378
-
Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization
-
Paredes R., Vidal E.A. Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognit 2006, 39:180-188.
-
(2006)
Pattern Recognit
, vol.39
, pp. 180-188
-
-
Paredes, R.1
Vidal, E.A.2
-
33
-
-
0036604999
-
Dissimilarity representations allow for building good classifiers
-
Pekalska E., Duin R.P.W. Dissimilarity representations allow for building good classifiers. Pattern Recognit Lett 2002, 23(8):943-956.
-
(2002)
Pattern Recognit Lett
, vol.23
, Issue.8
, pp. 943-956
-
-
Pekalska, E.1
Duin, R.P.W.2
-
34
-
-
27744546228
-
Prototype selection for dissimilarity-based classifiers
-
Pekalska E., Duin R.P.W., Páclik P. Prototype selection for dissimilarity-based classifiers. Pattern Recognit 2006, 39:189-208.
-
(2006)
Pattern Recognit
, vol.39
, pp. 189-208
-
-
Pekalska, E.1
Duin, R.P.W.2
Páclik, P.3
-
35
-
-
0041995203
-
A generalized kernel approach to dissimilarity based classification
-
Pekalska E., Páclik P., Duin R.P.W. A generalized kernel approach to dissimilarity based classification. J Mach Learn Res 2002, 2(2):175-211.
-
(2002)
J Mach Learn Res
, vol.2
, Issue.2
, pp. 175-211
-
-
Pekalska, E.1
Páclik, P.2
Duin, R.P.W.3
-
36
-
-
33749617897
-
The dissimilarity representation for instance recognition
-
World Scientific, Singapore
-
Pekalska E., Duin R.P.W. The dissimilarity representation for instance recognition. Foundations and applications 2005, World Scientific, Singapore.
-
(2005)
Foundations and applications
-
-
Pekalska, E.1
Duin, R.P.W.2
-
37
-
-
34547917144
-
Performance measures for Neyman-Pearson classification
-
Scott C. Performance measures for Neyman-Pearson classification. IEEE Trans Inform Theory 2007, 53(8):2852-2863.
-
(2007)
IEEE Trans Inform Theory
, vol.53
, Issue.8
, pp. 2852-2863
-
-
Scott, C.1
-
38
-
-
0042923097
-
Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
-
Somorjai R.L., Dolenko B., Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003, 19:1484-1491.
-
(2003)
Bioinformatics
, vol.19
, pp. 1484-1491
-
-
Somorjai, R.L.1
Dolenko, B.2
Baumgartner, R.3
-
39
-
-
5644298754
-
Mapping high-dimensional data onto a relative distance plane - a novel, exact method for visualizing and characterizing high-dimensional instances
-
Somorjai R.L., Demko A., Mandelzweig M., Dolenko B., Nikulin A.E., Baumgartner R., et al. Mapping high-dimensional data onto a relative distance plane - a novel, exact method for visualizing and characterizing high-dimensional instances. J Biomed Inform 2004, 37:366-379.
-
(2004)
J Biomed Inform
, vol.37
, pp. 366-379
-
-
Somorjai, R.L.1
Demko, A.2
Mandelzweig, M.3
Dolenko, B.4
Nikulin, A.E.5
Baumgartner, R.6
-
40
-
-
21844464895
-
-
A data-driven, flexible machine learning strategy for the classification of biomedical data. In: Dubitzky W, Azuaje F, editors. Artificial intelligence methods and tools for systems biology. Computational biology series. Springer [Chapter 5].
-
Somorjai RL, Alexander M, Baumgartner R, Booth S, Bowman C, Demko A, et al. A data-driven, flexible machine learning strategy for the classification of biomedical data. In: Dubitzky W, Azuaje F, editors. Artificial intelligence methods and tools for systems biology. Computational biology series, vol. 5. Springer. p. 67-85; 2004 [Chapter 5].
-
(2004)
, vol.5
, pp. 67-85
-
-
Somorjai, R.L.1
Alexander, M.2
Baumgartner, R.3
Booth, S.4
Bowman, C.5
Demko, A.6
-
41
-
-
33847677992
-
Direct classification of high-dimensional data in low-dimensional projected feature spaces - comparison of several classification methodologies
-
Somorjai R.L., Dolenko B., Mandelzweig M. Direct classification of high-dimensional data in low-dimensional projected feature spaces - comparison of several classification methodologies. J Biomed Inform 2007, 40:131-138.
-
(2007)
J Biomed Inform
, vol.40
, pp. 131-138
-
-
Somorjai, R.L.1
Dolenko, B.2
Mandelzweig, M.3
-
42
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
43
-
-
0036582564
-
A bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis
-
Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De Moor B., Vandewalle J. A bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis. Neural Comput 2002, 14(5):1115-1147.
-
(2002)
Neural Comput
, vol.14
, Issue.5
, pp. 1115-1147
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Lanckriet, G.3
Lambrechts, A.4
De Moor, B.5
Vandewalle, J.6
-
44
-
-
0033901276
-
An integrated instance-based learning algorithm
-
Wilson D.R., Martinez T.R. An integrated instance-based learning algorithm. Comput Intell 2000, 16:1-28.
-
(2000)
Comput Intell
, vol.16
, pp. 1-28
-
-
Wilson, D.R.1
Martinez, T.R.2
-
45
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach Learn 2000, 38(3):257-286.
-
(2000)
Mach Learn
, vol.38
, Issue.3
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
|