메뉴 건너뛰기




Volumn 44, Issue 5, 2011, Pages 775-788

Class proximity measures - Dissimilarity-based classification and display of high-dimensional data

Author keywords

Class proximity planes; Classification; Distance dissimilarity measures; High dimensional data; Mappings; Projections; Proximity measures; Visualization

Indexed keywords

CLASS-PROXIMITY PLANES; DISTANCE/DISSIMILARITY MEASURES; HIGH DIMENSIONAL DATA; PROJECTIONS; PROXIMITY MEASURE;

EID: 80955181062     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2011.04.004     Document Type: Article
Times cited : (6)

References (45)
  • 1
    • 0001195789 scopus 로고
    • Classification into two multivariate normal distributions with different covariance matrices
    • Anderson T.W., Bahadur R.R. Classification into two multivariate normal distributions with different covariance matrices. Ann Math Statist 1962, 33:420-431.
    • (1962) Ann Math Statist , vol.33 , pp. 420-431
    • Anderson, T.W.1    Bahadur, R.R.2
  • 2
    • 33750367353 scopus 로고    scopus 로고
    • Combining multiple k-nearest neighbor classifiers using different distance functions. Yang ZR et al. (Eds.) IDEAL 2004, LNCS 3177;
    • Bao Y, Ishii N, Du X. Combining multiple k-nearest neighbor classifiers using different distance functions. Yang ZR et al. (Eds.) IDEAL 2004, LNCS 3177; 2004. p. 634-41.
    • (2004) , pp. 634-41
    • Bao, Y.1    Ishii, N.2    Du, X.3
  • 3
    • 33744958288 scopus 로고    scopus 로고
    • Combining nearest neighbor classifiers through multiple feature subsets
    • Bay S.D. Combining nearest neighbor classifiers through multiple feature subsets. Intell Data Anal 1999, 3(3):191-209.
    • (1999) Intell Data Anal , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.D.1
  • 4
    • 68049109165 scopus 로고    scopus 로고
    • Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts
    • Bezabeh T., Somorjai R., Dolenko B., Bryskina N., Levin B., Bernstein C.N., et al. Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed 2009, 22(6):593-600.
    • (2009) NMR Biomed , vol.22 , Issue.6 , pp. 593-600
    • Bezabeh, T.1    Somorjai, R.2    Dolenko, B.3    Bryskina, N.4    Levin, B.5    Bernstein, C.N.6
  • 5
    • 0035575921 scopus 로고    scopus 로고
    • Nearest prototype classifier design: an experimental study
    • Bezdek J.C., Kuncheva L.I. Nearest prototype classifier design: an experimental study. Int J Intell Syst 2001, 16(12):1445-1473.
    • (2001) Int J Intell Syst , vol.16 , Issue.12 , pp. 1445-1473
    • Bezdek, J.C.1    Kuncheva, L.I.2
  • 7
    • 33746218126 scopus 로고    scopus 로고
    • On a transvariation based measure of group separability
    • Calò D.G. On a transvariation based measure of group separability. J Classif 2006, 23(1):143-167.
    • (2006) J Classif , vol.23 , Issue.1 , pp. 143-167
    • Calò, D.G.1
  • 8
    • 77957903367 scopus 로고    scopus 로고
    • Enhancing the classification accuracy by scatter-search ensemble approach
    • Chen Sh-Ch., Lin S.h.-W., Chou Sh-Y Enhancing the classification accuracy by scatter-search ensemble approach. Appl Soft Comput 2011, 11:1021-1028.
    • (2011) Appl Soft Comput , vol.11 , pp. 1021-1028
    • Chen, S.-C.1    Lin, S.-W.2    Chou, S.-Y.3
  • 9
    • 84926662675 scopus 로고
    • Nearest neighbor instance classification
    • Cover T.M., Hart P.E. Nearest neighbor instance classification. Trans IEEE Inform Theory 1967, IT-13:21-27.
    • (1967) Trans IEEE Inform Theory , vol.IT13 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 10
    • 0031530380 scopus 로고    scopus 로고
    • The proximity of an individual to a population with applications in discriminant analysis
    • Cuadras C.M., Fortiana J., Oliva F. The proximity of an individual to a population with applications in discriminant analysis. J Classif 1997, 14:117-136.
    • (1997) J Classif , vol.14 , pp. 117-136
    • Cuadras, C.M.1    Fortiana, J.2    Oliva, F.3
  • 12
    • 80955178681 scopus 로고    scopus 로고
    • Multi- and megavariate data analysis - principles and applications. Umetrics AB;
    • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. Multi- and megavariate data analysis - principles and applications. Umetrics AB; 2001.
    • (2001)
    • Eriksson, L.1    Johansson, E.2    Kettaneh-Wold, N.3    Wold, S.4
  • 13
    • 80955180827 scopus 로고
    • Non supervised classification tools adapted to supervised classification. NATO ASI series
    • Springer-Verlag, Berlin (Heidelberg)
    • Fages R., Terrenoire M., Tounissoux D., Zighed A. Non supervised classification tools adapted to supervised classification. NATO ASI series. Instance recognition theory and applications 1987, vol. F30:57-62. Springer-Verlag, Berlin (Heidelberg).
    • (1987) Instance recognition theory and applications , vol.F30 , pp. 57-62
    • Fages, R.1    Terrenoire, M.2    Tounissoux, D.3    Zighed, A.4
  • 14
    • 84860224772 scopus 로고    scopus 로고
    • UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science;
    • Frank A, Asuncion A. UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science; 2010. http://archive.ics.uci.edu/ml.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 15
    • 0000952525 scopus 로고
    • Classification: oldtimers and newcomers
    • Frank I.E., Friedman J.H. Classification: oldtimers and newcomers. J Chemometr 1989, 3:463-475.
    • (1989) J Chemometr , vol.3 , pp. 463-475
    • Frank, I.E.1    Friedman, J.H.2
  • 16
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman J.H., Tukey J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans Comput 1974, C23(9):881-890.
    • (1974) IEEE Trans Comput , vol.C23 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 17
    • 33750697973 scopus 로고    scopus 로고
    • Recent advances in predictive (machine) learning
    • Friedman J.H. Recent advances in predictive (machine) learning. J Classif 2006, 23:175-197.
    • (2006) J Classif , vol.23 , pp. 175-197
    • Friedman, J.H.1
  • 18
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman J.H. Regularized discriminant analysis. J Am Stat Assoc 1989, 84:165-175.
    • (1989) J Am Stat Assoc , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 20
    • 0020153865 scopus 로고
    • A non-parametric two-dimensional display for classification
    • Fukunaga K., Mantock J.M. A non-parametric two-dimensional display for classification. Trans IEEE Instance Anal Mach Intell 1982, PAMI-4:427-436.
    • (1982) Trans IEEE Instance Anal Mach Intell , vol.PAMI 4 , pp. 427-436
    • Fukunaga, K.1    Mantock, J.M.2
  • 22
    • 2942516120 scopus 로고    scopus 로고
    • Enhancing prototype reduction schemes with recursion: a method applicable for " large" data sets
    • Kim S.-W., Oommen B.J. Enhancing prototype reduction schemes with recursion: a method applicable for " large" data sets. IEEE Trans Syst Man Cybern - Part B: Cybern 2004, 34(3):1384-1897.
    • (2004) IEEE Trans Syst Man Cybern - Part B: Cybern , vol.34 , Issue.3 , pp. 1384-1897
    • Kim, S.-W.1    Oommen, B.J.2
  • 24
    • 33745421067 scopus 로고    scopus 로고
    • Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
    • Lozano M., Sotoca J.M., Sánchez J.S., Pla F., Pekalska E., Duin R.P.W. Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. Pattern Recognit 2006, 39:1827-1838.
    • (2006) Pattern Recognit , vol.39 , pp. 1827-1838
    • Lozano, M.1    Sotoca, J.M.2    Sánchez, J.S.3    Pla, F.4    Pekalska, E.5    Duin, R.P.W.6
  • 26
    • 3042526262 scopus 로고    scopus 로고
    • Linear discriminant analysis and transvariation
    • Montanari A. Linear discriminant analysis and transvariation. J Classif 2004, 21(1):71-88.
    • (2004) J Classif , vol.21 , Issue.1 , pp. 71-88
    • Montanari, A.1
  • 27
    • 0000776754 scopus 로고
    • On the problem of the most efficient tests of statistical hypotheses
    • Neyman J., Pearson E. On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc Lond Ser A 1933, 231:289-337.
    • (1933) Philos Trans R Soc Lond Ser A , vol.231 , pp. 289-337
    • Neyman, J.1    Pearson, E.2
  • 28
    • 0031926888 scopus 로고    scopus 로고
    • Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra
    • Nikulin A.E., Dolenko B., Bezabeh T., Somorjai R.L. Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra. NMR Biomed 1998, 11:209-217.
    • (1998) NMR Biomed , vol.11 , pp. 209-217
    • Nikulin, A.E.1    Dolenko, B.2    Bezabeh, T.3    Somorjai, R.L.4
  • 29
    • 0348041666 scopus 로고    scopus 로고
    • Dissimilarity-based classification of spectra: computational issues
    • Páclik P., Duin R.P.W. Dissimilarity-based classification of spectra: computational issues. Real Time Imag 2003, 9(4):237-244.
    • (2003) Real Time Imag , vol.9 , Issue.4 , pp. 237-244
    • Páclik, P.1    Duin, R.P.W.2
  • 30
    • 84860224776 scopus 로고    scopus 로고
    • Classifying spectral data using relational representation. Spectral imaging workshop, Graz, Austria;
    • Páclik P, Duin RPW. Classifying spectral data using relational representation. Spectral imaging workshop, Graz, Austria; 2003.
    • (2003)
    • Páclik, P.1    Duin, R.P.W.2
  • 31
    • 0034319192 scopus 로고    scopus 로고
    • Class-dependent weighted dissimilarity measure for nearest neighbor classification problems
    • Paredes R., Vidal E.A. Class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Pattern Recognit Lett 2000, 21:1027-1036.
    • (2000) Pattern Recognit Lett , vol.21 , pp. 1027-1036
    • Paredes, R.1    Vidal, E.A.2
  • 32
    • 27744468378 scopus 로고    scopus 로고
    • Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization
    • Paredes R., Vidal E.A. Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognit 2006, 39:180-188.
    • (2006) Pattern Recognit , vol.39 , pp. 180-188
    • Paredes, R.1    Vidal, E.A.2
  • 33
    • 0036604999 scopus 로고    scopus 로고
    • Dissimilarity representations allow for building good classifiers
    • Pekalska E., Duin R.P.W. Dissimilarity representations allow for building good classifiers. Pattern Recognit Lett 2002, 23(8):943-956.
    • (2002) Pattern Recognit Lett , vol.23 , Issue.8 , pp. 943-956
    • Pekalska, E.1    Duin, R.P.W.2
  • 34
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • Pekalska E., Duin R.P.W., Páclik P. Prototype selection for dissimilarity-based classifiers. Pattern Recognit 2006, 39:189-208.
    • (2006) Pattern Recognit , vol.39 , pp. 189-208
    • Pekalska, E.1    Duin, R.P.W.2    Páclik, P.3
  • 35
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity based classification
    • Pekalska E., Páclik P., Duin R.P.W. A generalized kernel approach to dissimilarity based classification. J Mach Learn Res 2002, 2(2):175-211.
    • (2002) J Mach Learn Res , vol.2 , Issue.2 , pp. 175-211
    • Pekalska, E.1    Páclik, P.2    Duin, R.P.W.3
  • 36
    • 33749617897 scopus 로고    scopus 로고
    • The dissimilarity representation for instance recognition
    • World Scientific, Singapore
    • Pekalska E., Duin R.P.W. The dissimilarity representation for instance recognition. Foundations and applications 2005, World Scientific, Singapore.
    • (2005) Foundations and applications
    • Pekalska, E.1    Duin, R.P.W.2
  • 37
    • 34547917144 scopus 로고    scopus 로고
    • Performance measures for Neyman-Pearson classification
    • Scott C. Performance measures for Neyman-Pearson classification. IEEE Trans Inform Theory 2007, 53(8):2852-2863.
    • (2007) IEEE Trans Inform Theory , vol.53 , Issue.8 , pp. 2852-2863
    • Scott, C.1
  • 38
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
    • Somorjai R.L., Dolenko B., Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003, 19:1484-1491.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 39
    • 5644298754 scopus 로고    scopus 로고
    • Mapping high-dimensional data onto a relative distance plane - a novel, exact method for visualizing and characterizing high-dimensional instances
    • Somorjai R.L., Demko A., Mandelzweig M., Dolenko B., Nikulin A.E., Baumgartner R., et al. Mapping high-dimensional data onto a relative distance plane - a novel, exact method for visualizing and characterizing high-dimensional instances. J Biomed Inform 2004, 37:366-379.
    • (2004) J Biomed Inform , vol.37 , pp. 366-379
    • Somorjai, R.L.1    Demko, A.2    Mandelzweig, M.3    Dolenko, B.4    Nikulin, A.E.5    Baumgartner, R.6
  • 40
    • 21844464895 scopus 로고    scopus 로고
    • A data-driven, flexible machine learning strategy for the classification of biomedical data. In: Dubitzky W, Azuaje F, editors. Artificial intelligence methods and tools for systems biology. Computational biology series. Springer [Chapter 5].
    • Somorjai RL, Alexander M, Baumgartner R, Booth S, Bowman C, Demko A, et al. A data-driven, flexible machine learning strategy for the classification of biomedical data. In: Dubitzky W, Azuaje F, editors. Artificial intelligence methods and tools for systems biology. Computational biology series, vol. 5. Springer. p. 67-85; 2004 [Chapter 5].
    • (2004) , vol.5 , pp. 67-85
    • Somorjai, R.L.1    Alexander, M.2    Baumgartner, R.3    Booth, S.4    Bowman, C.5    Demko, A.6
  • 41
    • 33847677992 scopus 로고    scopus 로고
    • Direct classification of high-dimensional data in low-dimensional projected feature spaces - comparison of several classification methodologies
    • Somorjai R.L., Dolenko B., Mandelzweig M. Direct classification of high-dimensional data in low-dimensional projected feature spaces - comparison of several classification methodologies. J Biomed Inform 2007, 40:131-138.
    • (2007) J Biomed Inform , vol.40 , pp. 131-138
    • Somorjai, R.L.1    Dolenko, B.2    Mandelzweig, M.3
  • 42
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 43
    • 0036582564 scopus 로고    scopus 로고
    • A bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis
    • Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De Moor B., Vandewalle J. A bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis. Neural Comput 2002, 14(5):1115-1147.
    • (2002) Neural Comput , vol.14 , Issue.5 , pp. 1115-1147
    • Van Gestel, T.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vandewalle, J.6
  • 44
    • 0033901276 scopus 로고    scopus 로고
    • An integrated instance-based learning algorithm
    • Wilson D.R., Martinez T.R. An integrated instance-based learning algorithm. Comput Intell 2000, 16:1-28.
    • (2000) Comput Intell , vol.16 , pp. 1-28
    • Wilson, D.R.1    Martinez, T.R.2
  • 45
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach Learn 2000, 38(3):257-286.
    • (2000) Mach Learn , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.