-
1
-
-
18344406127
-
Applying knowledge discovery to predict water-supply consumption
-
A. An, C. Chan, N. Shan, N. Cercone, and W. Ziarko Applying knowledge discovery to predict water-supply consumption IEEE Expert 12 4 1997 72 78 (Pubitemid 127786042)
-
(1997)
IEEE Expert-Intelligent Systems and their Applications
, vol.12
, Issue.4
, pp. 72-78
-
-
An, A.1
Chan, C.2
Shan, H.3
Cercone, N.4
Ziarko, W.5
-
2
-
-
0031206656
-
Approximation algorithms and decision making in the Dempster-Shafer theory of evidence -An empirical study
-
PII S0888613X97000133
-
M. Bauer Approximations algorithm and decision making in the Dempster-Shafer theory of evidence - an empirical study IJAR 17 2-3 1997 217 237 (Pubitemid 127399852)
-
(1997)
International Journal of Approximate Reasoning
, vol.17
, Issue.2-3
, pp. 217-237
-
-
Bauer, M.1
-
3
-
-
33750225286
-
Clustering approach using belief function theory
-
Artificial Intelligence: Methodology, Systems, and Applications - 12th International Conference, AIMSA 2006, Proceedings
-
S. Ben Hariz, Z. Elouedi, K. Mellouli, Clustering approach using belief function theory, in: 12th International Conference, AIMSA 2006, Varna, Bulgaria, September 12-15, LNAI 4183, 2006, pp. 162-171. (Pubitemid 44608979)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.LNCS 4183
, pp. 162-171
-
-
Hariz, S.B.1
Elouedi, Z.2
Mellouli, K.3
-
4
-
-
0010623928
-
A new distance between two bodies of evidence
-
DOI 10.1016/S1566-2535(01)00026-4, PII S1566253501000264
-
E. Bosse, A.L. Jousseleme, and D. Grenier A new distance between two bodies of evidence Information Fusion 2 2001 91 101 (Pubitemid 33632552)
-
(2001)
Information Fusion
, vol.2
, Issue.2
, pp. 91-101
-
-
Jousselme, A.-L.1
Grenier, D.2
Bosse, E.3
-
6
-
-
0029307876
-
A k-nearest neighbor classification rule based on Dempster-Shafer theory
-
T. Denoeux A k-nearest neighbor classification rule based on Dempster-Shafer theory IEEE Transactions on Systems, Man and Cybernetics 25 5 1995 804 813
-
(1995)
IEEE Transactions on Systems, Man and Cybernetics
, vol.25
, Issue.5
, pp. 804-813
-
-
Denoeux, T.1
-
7
-
-
0034505375
-
Induction of decision trees from partially classified data using belief functions
-
T. Denoeux, M. Skarstien-Bajanger, Induction of decision trees form partially classified data using belief functions, in: IEEE International Conference on Systems, Nashville, USA, vol. 4, 2000, pp. 2923-2928. (Pubitemid 32068951)
-
(2000)
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
, vol.4
, pp. 2923-2928
-
-
Denoeux, T.1
Bjanger M.Skarstein2
-
9
-
-
84957713178
-
Probabilistic rough induction: The GDS-RS methodology and algorithms
-
Z.W. Ras, A. Skowron, Springer Berlin
-
J.Z. Dong, N. Zhong, and S. Ohsuga Probabilistic rough induction: the GDS-RS methodology and algorithms Z.W. Ras, A. Skowron, Foundations of Intelligent Systems 1999 Springer Berlin 621 629
-
(1999)
Foundations of Intelligent Systems
, pp. 621-629
-
-
Dong, J.Z.1
Zhong, N.2
Ohsuga, S.3
-
10
-
-
0002588839
-
Putting rough sets and fuzzy sets together
-
R. Slowinski, Kluwer Dordrecht
-
D. Dubois Putting rough sets and fuzzy sets together R. Slowinski, Intelligent Decision Support 1992 Kluwer Dordrecht 203 232
-
(1992)
Intelligent Decision Support
, pp. 203-232
-
-
Dubois, D.1
-
11
-
-
0035501830
-
Belief decision trees: Theoretical foundations
-
DOI 10.1016/S0888-613X(01)00045-7, PII S0888613X01000457
-
Z. Elouedi, K. Mellouli, and P. Smets Belief decision trees: theoretical foundations International Journal of Approximate Reasoning 28 2-3 2001 91 124 (Pubitemid 32833458)
-
(2001)
International Journal of Approximate Reasoning
, vol.28
, Issue.2-3
, pp. 91-124
-
-
Elouedi, Z.1
Mellouli, K.2
Smets, P.3
-
12
-
-
77950676488
-
A pre-pruning method in belief decision trees
-
Annecy, France
-
Z. Elouedi, K. Mellouli, P. Smets, A pre-pruning method in belief decision trees, in: The Ninth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Annecy, France, vol. 1, 2002, pp. 579-586.
-
(2002)
The Ninth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU)
, vol.1
, pp. 579-586
-
-
Elouedi, Z.1
Mellouli, K.2
Smets, P.3
-
13
-
-
0742307275
-
Assessing sensor reliability for multisensor data fusion within the transferable belief model
-
Z. Elouedi, K. Mellouli, and P. Smets Assessing sensor reliability for multisensor data fusion within the transferable belief model IEEE Transactions on Systems, Man and Cybernetics 34 1 2004 782 787
-
(2004)
IEEE Transactions on Systems, Man and Cybernetics
, vol.34
, Issue.1
, pp. 782-787
-
-
Elouedi, Z.1
Mellouli, K.2
Smets, P.3
-
14
-
-
80955137747
-
Dominance-based fuzzy rough set analysis of uncertain and possibilistic data tables
-
T.F. Fan, C.J. Liau, and D.R. Liu Dominance-based fuzzy rough set analysis of uncertain and possibilistic data tables International Journal of Approximate Reasoning 52 9 2011 1283 1297
-
(2011)
International Journal of Approximate Reasoning
, vol.52
, Issue.9
, pp. 1283-1297
-
-
Fan, T.F.1
Liau, C.J.2
Liu, D.R.3
-
17
-
-
9444231706
-
Rough set strategies to data with missing attribute values
-
Melbourne, FL
-
J.W. Grzymala-Busse, Rough set strategies to data with missing attribute values, in: Workshop Notes, Foundations and New Directions of Data Mining, The 3rd International Conference on Data Mining, Melbourne, FL, 2003, pp. 56-63.
-
(2003)
Workshop Notes, Foundations and New Directions of Data Mining, the 3rd International Conference on Data Mining
, pp. 56-63
-
-
Grzymala-Busse, J.W.1
-
18
-
-
34548834354
-
Rough set approaches to rule induction from incomplete data
-
Perugia, Italy, July 4-9
-
J.W. Grzymala-Busse, S. Siddhaye, Rough set approaches to rule induction from incomplete data, in: Proceedings of the IPMU'2004, Perugia, Italy, July 4-9, vol. 2, 2004, pp. 923-930.
-
(2004)
Proceedings of the IPMU'2004
, vol.2
, pp. 923-930
-
-
Grzymala-Busse, J.W.1
Siddhaye, S.2
-
19
-
-
0036454229
-
-
T.P. Hong, L.H. Tseng, B.C. Chien, Learning fuzzy rules from incomplete quantitative data by rough sets, IEEE, 2002, pp. 1438-1442.
-
(2002)
Learning Fuzzy Rules from Incomplete Quantitative Data by Rough Sets, IEEE
, pp. 1438-1442
-
-
Hong, T.P.1
Tseng, L.H.2
Chien, B.C.3
-
20
-
-
79551682436
-
Rough set based maximum relevance-maximum significance criterion and Gene selection from microarray data
-
P. Maji, and S. Paul Rough set based maximum relevance-maximum significance criterion and Gene selection from microarray data International Journal of Approximate Reasoning 52 3 2011 408 426
-
(2011)
International Journal of Approximate Reasoning
, vol.52
, Issue.3
, pp. 408-426
-
-
Maji, P.1
Paul, S.2
-
21
-
-
0033728781
-
Combining belief functions when evidence conflicts
-
C.K. Murphy Combining belief functions when evidence conflicts Decision Support Systems 29 2000 1 9
-
(2000)
Decision Support Systems
, vol.29
, pp. 1-9
-
-
Murphy, C.K.1
-
27
-
-
0002395767
-
The discernibility matrices and functions in information systems
-
R. Slowinski, Kluwer Academic Publishers Boston, MA
-
A. Skowron, and C. Rauszer The discernibility matrices and functions in information systems R. Slowinski, Intelligent Decision Support 1992 Kluwer Academic Publishers Boston, MA 331 362
-
(1992)
Intelligent Decision Support
, pp. 331-362
-
-
Skowron, A.1
Rauszer, C.2
-
29
-
-
0028406490
-
The transferable belief model
-
P. Smets, and R. Kennes The transferable belief model Artificial Intelligence 66 2 1994 191 234
-
(1994)
Artificial Intelligence
, vol.66
, Issue.2
, pp. 191-234
-
-
Smets, P.1
Kennes, R.2
-
30
-
-
0001099497
-
The transferable belief model for quantified belief representation
-
D.M. Gabbay, P. Smets, Kluwer Dordrecht, The Netherlands
-
P. Smets The transferable belief model for quantified belief representation D.M. Gabbay, P. Smets, Handbook of Defeasible Reasoning and Uncertainty Management Systems vol. 1 1998 Kluwer Dordrecht, The Netherlands 207 301
-
(1998)
Handbook of Defeasible Reasoning and Uncertainty Management Systems
, vol.1
, pp. 207-301
-
-
Smets, P.1
-
31
-
-
0031999096
-
Application of the transferable belief model to diagnostic problems
-
P. Smets Application of belief transferable belief model to diagnostic problems International Journal of Intelligent Systems 13 2-3 1998 127 157 (Pubitemid 128591038)
-
(1998)
International Journal of Intelligent Systems
, vol.13
, Issue.2-3
, pp. 127-157
-
-
Smets, P.1
-
32
-
-
79955557689
-
Core-generating approximate minimum entropy discretization for rough set feature selection in pattern classification
-
D. Tian, X.J. Zeng, and J. Keane Core-generating approximate minimum entropy discretization for rough set feature selection in pattern classification International Journal of Approximate Reasoning 52 6 2011 863 880
-
(2011)
International Journal of Approximate Reasoning
, vol.52
, Issue.6
, pp. 863-880
-
-
Tian, D.1
Zeng, X.J.2
Keane, J.3
-
34
-
-
58049165301
-
Learning decision rules from uncertain data using rough sets
-
Madrid, Spain, September 21-24, World Scientific
-
S. Trabelsi, Z. Elouedi, Learning decision rules from uncertain data using rough sets, in: The 8th International FLINS Conference on Computational Intelligence in Decision and Control, Madrid, Spain, September 21-24, World Scientific, 2008, pp. 114-119.
-
(2008)
The 8th International FLINS Conference on Computational Intelligence in Decision and Control
, pp. 114-119
-
-
Trabelsi, S.1
Elouedi, Z.2
-
35
-
-
69849094459
-
-
Canadian AI 2009, LNAI 5549
-
S. Trabelsi, Z. Elouedi, P. Lingras, Belief rough set classifier, Canadian AI 2009, LNAI 5549, 2009, pp. 257-261.
-
(2009)
Belief Rough Set Classifier
, pp. 257-261
-
-
Trabelsi, S.1
Elouedi, Z.2
Lingras, P.3
-
36
-
-
77954878266
-
Rule discovery process based on rough sets under the belief function framework
-
LNAI 6178
-
S. Trabelsi, Z. Elouedi, P. Lingras, Rule discovery process based on rough sets under the belief function framework, IPMU 2010, LNAI 6178, 2010, pp. 726-736.
-
(2010)
IPMU 2010
, pp. 726-736
-
-
Trabelsi, S.1
Elouedi, Z.2
Lingras, P.3
-
37
-
-
77949291930
-
Heuristic method for attribute selection from partially uncertain data using rough sets
-
S. Trabelsi, and Z. Elouedi Heuristic method for attribute selection from partially uncertain data using rough sets International Journal of General Systems 39 3 2010 271 290
-
(2010)
International Journal of General Systems
, vol.39
, Issue.3
, pp. 271-290
-
-
Trabelsi, S.1
Elouedi, Z.2
-
38
-
-
79851498013
-
Belief rough set classification for web mining based on dynamic core
-
Cairo, Egypt, November 29, December 1
-
S. Trabelsi, Z. Elouedi, P. Lingras, Belief rough set classification for web mining based on dynamic core, in: The Tenth International Conference on Intelligent Systems Design and Applications (ISDA), Cairo, Egypt, November 29, December 1, 2010, pp. 403-408.
-
(2010)
The Tenth International Conference on Intelligent Systems Design and Applications (ISDA)
, pp. 403-408
-
-
Trabelsi, S.1
Elouedi, Z.2
Lingras, P.3
-
39
-
-
3142775061
-
On aggregating belief decision trees
-
DOI 10.1016/j.inffus.2004.01.001, PII S1566253504000132
-
P. Vannoorenberghe On aggregating belief decision trees Information Fusion 5 2 2004 179 188 (Pubitemid 38930718)
-
(2004)
Information Fusion
, vol.5
, Issue.3
, pp. 179-188
-
-
Vannoorenberghe, P.1
-
40
-
-
0035416447
-
Using rough sets with heuristics for feature selection
-
DOI 10.1023/A:1011219601502
-
N. Zhong, J.Z. Dong, and S. Ohsuga Using rough sets with heuristics for feature selection Journal of Intelligent Information Systems 16 3 2001 199 214 (Pubitemid 32886812)
-
(2001)
Journal of Intelligent Information Systems
, vol.16
, Issue.3
, pp. 199-214
-
-
Zhong, N.1
Dong, J.2
Ohsuga, S.3
-
42
-
-
0002194966
-
Using generalization distribution tables as a hypotheses search space for generalization
-
N. Zhong, J.Z. Dong, S. Ohsuga, Using generalization distribution tables as a hypotheses search space for generalization, in: Proceedings of Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), 1996, pp. 396-403.
-
(1996)
Proceedings of Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96)
, pp. 396-403
-
-
Zhong, N.1
Dong, J.Z.2
Ohsuga, S.3
|