메뉴 건너뛰기




Volumn 52, Issue 3, 2011, Pages 408-426

Rough set based maximum relevance-maximum significance criterion and Gene selection from microarray data

Author keywords

Classification; Feature selection; Gene selection; Microarray analysis; Rough sets

Indexed keywords

CLASSIFICATION; FEATURE SELECTION; GENE SELECTION; MICROARRAY ANALYSIS; ROUGH SET;

EID: 79551682436     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2010.09.006     Document Type: Article
Times cited : (118)

References (70)
  • 2
    • 0037273544 scopus 로고    scopus 로고
    • Cluster analysis of gene expression data
    • E. Domany Cluster analysis of gene expression data Journal of Statistical Physics 110 3-6 2003 1117 1139
    • (2003) Journal of Statistical Physics , vol.110 , Issue.36 , pp. 1117-1139
    • Domany, E.1
  • 3
    • 34548125448 scopus 로고    scopus 로고
    • Logistic regression for disease classification using microarray data: Model selection in a large p and small n case
    • J.G. Liao, and K.-V. Chin Logistic regression for disease classification using microarray data: model selection in a large p and small n case Bioinformatics 23 15 2007 1945 1951
    • (2007) Bioinformatics , vol.23 , Issue.15 , pp. 1945-1951
    • Liao, J.G.1    Chin, K.-V.2
  • 7
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artificial Intelligence 97 1-2 1997 273 324
    • (1997) Artificial Intelligence , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 10
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of Max-Dependency, Max-Relevance, and Min-Redundancy IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 2005 1226 1238
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 11
    • 25444528240 scopus 로고    scopus 로고
    • An entropy based gene selection method for cancer classification using microarray data
    • X. Liu, A. Krishnan, and A. Mondry An entropy based gene selection method for cancer classification using microarray data BMC Bioinformatics 6 76 2005 1 14
    • (2005) BMC Bioinformatics , vol.6 , Issue.76 , pp. 1-14
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 14
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification and gene selection
    • L. Wang, J. Zhu, and H. Zou Hybrid huberized support vector machines for microarray classification and gene selection Bioinformatics 24 3 2008 412 419
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 412-419
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 15
    • 67349151313 scopus 로고    scopus 로고
    • Gene boosting for cancer classification based on gene expression profiles
    • J.-H. Hong, and S.-B. Cho Gene boosting for cancer classification based on gene expression profiles Pattern Recognition 42 9 2009 1761 1767
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1761-1767
    • Hong, J.-H.1    Cho, S.-B.2
  • 16
    • 84875679383 scopus 로고    scopus 로고
    • F-Information measures for efficient selection of discriminative genes from microarray data
    • P. Maji f-Information measures for efficient selection of discriminative genes from microarray data IEEE Transactions on Biomedical Engineering 56 4 2009 1063 1069
    • (2009) IEEE Transactions on Biomedical Engineering , vol.56 , Issue.4 , pp. 1063-1069
    • Maji, P.1
  • 18
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of coexpressed genes
    • L.J. Heyer, S. Kruglyak, and S. Yooseph Exploring expression data: identification and analysis of coexpressed genes Genome Research 9 11 1999 1106 1115
    • (1999) Genome Research , vol.9 , Issue.11 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 19
    • 33144473447 scopus 로고    scopus 로고
    • Interactive gene clustering - A case study of breast cancer microarray data
    • A. Gruzdz, A. Ihnatowicz, and D. Slezak Interactive gene clustering - a case study of breast cancer microarray data Information Systems Frontiers 8 2006 21 27
    • (2006) Information Systems Frontiers , vol.8 , pp. 21-27
    • Gruzdz, A.1    Ihnatowicz, A.2    Slezak, D.3
  • 25
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • R. Jensen, and Q. Shen Fuzzy-rough attribute reduction with application to web categorization Fuzzy Sets and Systems 141 2004 469 485
    • (2004) Fuzzy Sets and Systems , vol.141 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 26
    • 1642525198 scopus 로고    scopus 로고
    • Constructive and axiomatic approaches of fuzzy approximation operators
    • W. Wu, and W. Zhang Constructive and axiomatic approaches of fuzzy approximation operators Information Sciences 159 2004 233 254
    • (2004) Information Sciences , vol.159 , pp. 233-254
    • Wu, W.1    Zhang, W.2
  • 27
    • 70349766835 scopus 로고    scopus 로고
    • A granularity-based framework of deduction, induction, and abduction
    • Y. Kudo, T. Murai, and S. Akama A granularity-based framework of deduction, induction, and abduction International Journal of Approximate Reasoning 50 8 2009 1215 1226
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.8 , pp. 1215-1226
    • Kudo, Y.1    Murai, T.2    Akama, S.3
  • 28
    • 58849144238 scopus 로고    scopus 로고
    • Knowledge structure, knowledge granulation and knowledge distance in a knowledge base
    • Y. Qian, J. Liang, and C. Dang Knowledge structure, knowledge granulation and knowledge distance in a knowledge base International Journal of Approximate Reasoning 50 1 2009 174 188
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.1 , pp. 174-188
    • Qian, Y.1    Liang, J.2    Dang, C.3
  • 31
    • 0033362341 scopus 로고    scopus 로고
    • Combining rough sets and data-driven fuzzy learning for generation of classification rules
    • Q. Shen, and A. Chouchoulas Combining rough sets and data-driven fuzzy learning for generation of classification rules Pattern Recognition 32 12 1999 2073 2076
    • (1999) Pattern Recognition , vol.32 , Issue.12 , pp. 2073-2076
    • Shen, Q.1    Chouchoulas, A.2
  • 32
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approach
    • R. Jensen, and Q. Shen Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approach IEEE Transactions on Knowledge and Data Engineering 16 12 2004 1457 1471
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 35
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorisation
    • A. Chouchoulas, and Q. Shen Rough set-aided keyword reduction for text categorisation Applied Artificial Intelligence 15 2001 843 873
    • (2001) Applied Artificial Intelligence , vol.15 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 37
    • 0002395767 scopus 로고
    • The discernibility matrices and functions in information systems
    • A. Skowron, and C. Rauszer The discernibility matrices and functions in information systems R. Slowinski, Intelligent Decision Support 1992 Kluwer Academic Publishers Dordrecht 331 362
    • (1992) Intelligent Decision Support , pp. 331-362
    • Skowron, A.1    Rauszer, C.2
  • 38
    • 0042656300 scopus 로고
    • Dynamic reducts as a tool for extracting laws from decision tables
    • Proceedings of the 8th Symposium on Methodologies for Intelligent Systems
    • J. Bazan, A. Skowron, and P. Synak Dynamic reducts as a tool for extracting laws from decision tables Z.W. Ras, M. Zemankova, Proceedings of the 8th Symposium on Methodologies for Intelligent Systems Lecture Notes in Artificial Intelligence vol. 869 1994 Springer-Verlag 346 355
    • (1994) Lecture Notes in Artificial Intelligence , vol.869 , pp. 346-355
    • Bazan, J.1    Skowron, A.2    Synak, P.3
  • 42
    • 0035427240 scopus 로고    scopus 로고
    • Data classification based on tolerant rough set
    • D. Kim Data classification based on tolerant rough set Pattern Recognition 34 8 2001 1613 1624
    • (2001) Pattern Recognition , vol.34 , Issue.8 , pp. 1613-1624
    • Kim, D.1
  • 43
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • N.M. Parthalain, and Q. Shen Exploring the boundary region of tolerance rough sets for feature selection Pattern Recognition 42 5 2009 655 667
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 655-667
    • Parthalain, N.M.1    Shen, Q.2
  • 44
    • 52949092454 scopus 로고    scopus 로고
    • Probabilistic rough sets: Approximations, decision-makings, and applications
    • J. Yao, Y. Yao, and W. Ziarko Probabilistic rough sets: approximations, decision-makings, and applications International Journal of Approximate Reasoning 49 2 2008 253 254
    • (2008) International Journal of Approximate Reasoning , vol.49 , Issue.2 , pp. 253-254
    • Yao, J.1    Yao, Y.2    Ziarko, W.3
  • 53
    • 0242657729 scopus 로고    scopus 로고
    • Stability of continuous value discretisation: An application within rough set theory
    • M.J. Beynon Stability of continuous value discretisation: an application within rough set theory International Journal of Approximate Reasoning 35 2004 29 53
    • (2004) International Journal of Approximate Reasoning , vol.35 , pp. 29-53
    • Beynon, M.J.1
  • 54
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q. Hu, Z. Xie, and D. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognition 40 2007 3577 3594
    • (2007) Pattern Recognition , vol.40 , pp. 3577-3594
    • Hu, Q.1    Xie, Z.2    Yu, D.3
  • 58
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Q. Hu, D. Yu, J. Liu, and C. Wu Neighborhood rough set based heterogeneous feature subset selection Information Sciences 178 2008 3577 3594
    • (2008) Information Sciences , vol.178 , pp. 3577-3594
    • Hu, Q.1    Yu, D.2    Liu, J.3    Wu, C.4
  • 59
    • 77952582116 scopus 로고    scopus 로고
    • Fuzzy-rough sets for information measures and selection of relevant genes from microarray data
    • P. Maji, and S.K. Pal Fuzzy-rough sets for information measures and selection of relevant genes from microarray data IEEE Transactions on System, Man and Cybernetics, Part B, Cybernetics 40 3 2010 741 752
    • (2010) IEEE Transactions on System, Man and Cybernetics, Part B, Cybernetics , vol.40 , Issue.3 , pp. 741-752
    • Maji, P.1    Pal, S.K.2
  • 60
    • 77951766769 scopus 로고    scopus 로고
    • Feature selection using f-information measures in fuzzy approximation spaces
    • P. Maji, and S.K. Pal Feature selection using f-information measures in fuzzy approximation spaces IEEE Transactions on Knowledge and Data Engineering 22 6 2010 854 867
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , Issue.6 , pp. 854-867
    • Maji, P.1    Pal, S.K.2
  • 70
    • 0002698749 scopus 로고
    • Tables for use in comparisons whose accuracy involves two variances
    • A. Aspin Tables for use in comparisons whose accuracy involves two variances Biometrika 36 1949 245 271
    • (1949) Biometrika , vol.36 , pp. 245-271
    • Aspin, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.