메뉴 건너뛰기




Volumn 58, Issue 4, 2011, Pages 475-496

The L2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations

Author keywords

Caputo derivative; Fractional integro differential equations; Tau method

Indexed keywords


EID: 80855132858     PISSN: 10171398     EISSN: 15729265     Source Type: Journal    
DOI: 10.1007/s11075-011-9465-6     Document Type: Article
Times cited : (52)

References (21)
  • 1
    • 67349259963 scopus 로고    scopus 로고
    • The adaptive operational Tau method for system of ODE's
    • Hosseini, S. M.: The adaptive operational Tau method for system of ODE's. J. Comput. Appl. Math. 231, 24-38 (2009).
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 24-38
    • Hosseini, S.M.1
  • 2
    • 57149087968 scopus 로고    scopus 로고
    • Tao Tang, Xiang Xu and Jin Cheng on spectral methods for Volterra type integral equations and the convergence analysis
    • Tang, T., Xu, X., Cheng, J.: Tao Tang, Xiang Xu and Jin Cheng on spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26, 825-837 (2008).
    • (2008) J. Comput. Math. , vol.26 , pp. 825-837
    • Tang, T.1    Xu, X.2    Cheng, J.3
  • 3
    • 64949197043 scopus 로고    scopus 로고
    • Solution of fractional integro-differential equations by using fractional differential transfom method
    • Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transfom method. Chaos, Solitons Fractals 40, 521-529 (2009).
    • (2009) Chaos, Solitons Fractals , vol.40 , pp. 521-529
    • Arikoglu, A.1    Ozkol, I.2
  • 4
    • 33750841854 scopus 로고    scopus 로고
    • Numerical methods for fourth-order fractional integro-differential equations
    • Momani, S., Noor, M. A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182, 754-760 (2006).
    • (2006) Appl. Math. Comput. , vol.182 , pp. 754-760
    • Momani, S.1    Noor, M.A.2
  • 5
    • 33646161468 scopus 로고    scopus 로고
    • Numerical solution of fractional integro-differential equations by collocation method
    • Rawashdeh, E. A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176, 1-6 (2006).
    • (2006) Appl. Math. Comput. , vol.176 , pp. 1-6
    • Rawashdeh, E.A.1
  • 6
    • 33750457322 scopus 로고    scopus 로고
    • An efficient method for solving systems of fractional integro-differential equations
    • Momani, S., Qaralleh, R.: An efficient method for solving systems of fractional integro-differential equations. Comput. Math. Appl. 52, 459-470 (2006).
    • (2006) Comput. Math. Appl. , vol.52 , pp. 459-470
    • Momani, S.1    Qaralleh, R.2
  • 7
    • 0037293897 scopus 로고    scopus 로고
    • Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases
    • Hosseini, S. M., Shahmorad, S.: Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases. Appl. Math. Model. 27, 145-154 (2003).
    • (2003) Appl. Math. Model. , vol.27 , pp. 145-154
    • Hosseini, S.M.1    Shahmorad, S.2
  • 8
    • 0037443341 scopus 로고    scopus 로고
    • Numerical solution of a class of integro-differential equations by the Tau method with an error estimation
    • Hosseini, S. M., Shahmorad, S.: Numerical solution of a class of integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 136, 559-570 (2003).
    • (2003) Appl. Math. Comput. , vol.136 , pp. 559-570
    • Hosseini, S.M.1    Shahmorad, S.2
  • 12
    • 0019659830 scopus 로고
    • An operational approach to the Tau method for the numerical solution of nonlinear differential equations
    • Ortiz, E. L., Samara, H.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27, 15-25 (1981).
    • (1981) Computing , vol.27 , pp. 15-25
    • Ortiz, E.L.1    Samara, H.2
  • 13
    • 0020905495 scopus 로고
    • Numerical solution of differential eigenvalue problems with an operational approach to the Tau method
    • Ortiz, E. L., Samara, H.: Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. Computing 31, 95-103 (1983).
    • (1983) Computing , vol.31 , pp. 95-103
    • Ortiz, E.L.1    Samara, H.2
  • 14
    • 0021177673 scopus 로고
    • Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method
    • Ortiz, E. L., Samara, H.: Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method. Comput. Math. Appl. 10, 5-13 (1984).
    • (1984) Comput. Math. Appl. , vol.10 , pp. 5-13
    • Ortiz, E.L.1    Samara, H.2
  • 15
    • 33750616683 scopus 로고    scopus 로고
    • The weighted subspace of the Tau method and orthogonal collocation
    • El-Daou, M. K., Ortiz, E. L.: The weighted subspace of the Tau method and orthogonal collocation. J. Math. Anal. Appl. 326, 622-631 (2007).
    • (2007) J. Math. Anal. Appl. , vol.326 , pp. 622-631
    • El-Daou, M.K.1    Ortiz, E.L.2
  • 16
    • 76149085866 scopus 로고    scopus 로고
    • Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations
    • Ghoreishi, F., Hadizadeh, M.: Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations. Numer. Algorithms 52, 541-559 (2009).
    • (2009) Numer. Algorithms , vol.52 , pp. 541-559
    • Ghoreishi, F.1    Hadizadeh, M.2
  • 17
    • 0003764494 scopus 로고
    • Cambridge: Cambridge University Press
    • Bollobas, B.: Linear Analysis. Cambridge University Press, Cambridge (1990).
    • (1990) Linear Analysis
    • Bollobas, B.1
  • 20
    • 78649445937 scopus 로고    scopus 로고
    • An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis
    • Ghoreishi, F., Yazdani, S.: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 61, 30-43 (2011).
    • (2011) Comput. Math. Appl. , vol.61 , pp. 30-43
    • Ghoreishi, F.1    Yazdani, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.