-
1
-
-
0019659830
-
An operational approach to the Tau Method for the numerical solution of nonlinear differential equations
-
Ortiz E.L., Samara H. An operational approach to the Tau Method for the numerical solution of nonlinear differential equations. Computing. 27:1981;15-25.
-
(1981)
Computing
, vol.27
, pp. 15-25
-
-
Ortiz, E.L.1
Samara, H.2
-
2
-
-
85162699057
-
Trigonometric interpolation of empirical and analytical functions
-
Lanczos C. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys. 17:1938;123-199.
-
(1938)
J. Math. Phys.
, vol.17
, pp. 123-199
-
-
Lanczos, C.1
-
3
-
-
0003167590
-
Eigenvalue problems for singularly perturbed differential equations
-
Miller J.J.H. Dublin: Boole Press
-
Liu K.M., Ortiz E.L. Eigenvalue problems for singularly perturbed differential equations. Miller J.J.H. Proceedings of the BAIL II Conference. 1982;324-329 Boole Press, Dublin.
-
(1982)
Proceedings of the BAIL II Conference
, pp. 324-329
-
-
Liu, K.M.1
Ortiz, E.L.2
-
4
-
-
0003006282
-
Approximation of eigenvalues defined by ordinary differential equations with the Tau Method
-
Ka gestrmB.RuheA. Berlin: Springer
-
Liu K.M., Ortiz E.L. Approximation of eigenvalues defined by ordinary differential equations with the Tau Method. Ka gestrm B., Ruhe A. Matrix Pencils. 1983;90-102 Springer, Berlin.
-
(1983)
Matrix Pencils
, pp. 90-102
-
-
Liu, K.M.1
Ortiz, E.L.2
-
5
-
-
38249034254
-
Tau Method approximation of differential eigenvalue problems where the spectral parameter enters nonlinearly
-
Liu K.M., Ortiz E.L. Tau Method approximation of differential eigenvalue problems where the spectral parameter enters nonlinearly. J. Comput. Phys. 72:1987;299-310.
-
(1987)
J. Comput. Phys.
, vol.72
, pp. 299-310
-
-
Liu, K.M.1
Ortiz, E.L.2
-
6
-
-
0024775023
-
Numerical solution of ordinary and partial function-differential eigenvalue problems with the Tau Method
-
Liu K.M., Ortiz E.L. Numerical solution of ordinary and partial function-differential eigenvalue problems with the Tau Method. Computing (wien). 41:1989;205-217.
-
(1989)
Computing (wien)
, vol.41
, pp. 205-217
-
-
Liu, K.M.1
Ortiz, E.L.2
-
7
-
-
0020905495
-
Numerical solution of differential eigenvalue problems with an operational approach to the Tau Method
-
Ortiz E.L., Samara H. Numerical solution of differential eigenvalue problems with an operational approach to the Tau Method. Computing. 31:1983;95-103.
-
(1983)
Computing
, vol.31
, pp. 95-103
-
-
Ortiz, E.L.1
Samara, H.2
-
8
-
-
0022784186
-
Numerical solution of eigenvalue problems for partial differential equations with the Tau-lines Method
-
Liu K.M., Ortiz E.L. Numerical solution of eigenvalue problems for partial differential equations with the Tau-lines Method. Comp. Math. Appl. B. 12(5/6):1986;1153-1168.
-
(1986)
Comp. Math. Appl. B
, vol.12
, Issue.5-6
, pp. 1153-1168
-
-
Liu, K.M.1
Ortiz, E.L.2
-
10
-
-
4244163123
-
Numerical solution of nonlinear partial differential equations with Tau Method
-
Ortiz E.L., Pun K.S. Numerical solution of nonlinear partial differential equations with Tau Method. J. Comp. Appl. Math. 12/13:1985;511-516.
-
(1985)
J. Comp. Appl. Math.
, vol.12
, Issue.13
, pp. 511-516
-
-
Ortiz, E.L.1
Pun, K.S.2
-
11
-
-
0022782188
-
A bi-dimensional Tau-Elements Method for the numerical solution of nonlinear partial differential equations with an application to Burgers' equation
-
Ortiz E.L., Pun K.S. A bi-dimensional Tau-Elements Method for the numerical solution of nonlinear partial differential equations with an application to Burgers' equation. Comp. Math. Appl. B. 12(5/6):1986;1225-1240.
-
(1986)
Comp. Math. Appl. B
, vol.12
, Issue.5-6
, pp. 1225-1240
-
-
Ortiz, E.L.1
Pun, K.S.2
-
12
-
-
0021177673
-
Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau Method
-
Ortiz E.L., Samara H. Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau Method. Comp. Math. Appl. 10(1):1984;5-13.
-
(1984)
Comp. Math. Appl.
, vol.10
, Issue.1
, pp. 5-13
-
-
Ortiz, E.L.1
Samara, H.2
-
13
-
-
0031537729
-
Iterated solutions of linear operator equations with the Tau Method
-
EL-Daou M.K., Khajah H.G. Iterated solutions of linear operator equations with the Tau Method. Math. Comput. 66(217):1997;207-213.
-
(1997)
Math. Comput.
, vol.66
, Issue.217
, pp. 207-213
-
-
El-Daou, M.K.1
Khajah, H.G.2
-
14
-
-
0011108071
-
Structure of recurrence relations in the study of stability in the numerical treatment of Volterra integral and integro-differential equations
-
Baker C.T.H. Structure of recurrence relations in the study of stability in the numerical treatment of Volterra integral and integro-differential equations. J. Integral Equations. 2:1980;11-29.
-
(1980)
J. Integral Equations
, vol.2
, pp. 11-29
-
-
Baker, C.T.H.1
-
15
-
-
0011085402
-
On the stability of Volterra integral equations with separable kernels
-
Amini S. On the stability of Volterra integral equations with separable kernels. Appl. Anal. 24:1987;241-251.
-
(1987)
Appl. Anal.
, vol.24
, pp. 241-251
-
-
Amini, S.1
-
16
-
-
0001676643
-
Superconvergence of collocation methods for Volterra and Abel integral equations of second kind
-
Brunner H., Norsett P. Superconvergence of collocation methods for Volterra and Abel integral equations of second kind. Numer. Math. 36:1981;347-358.
-
(1981)
Numer. Math.
, vol.36
, pp. 347-358
-
-
Brunner, H.1
Norsett, P.2
-
17
-
-
84966253280
-
On certain extrapolation methods for the numerical solution of integro-differential equations
-
Chang S.H. On certain extrapolation methods for the numerical solution of integro-differential equations. Math. Comp. 39:1982;165-171.
-
(1982)
Math. Comp.
, vol.39
, pp. 165-171
-
-
Chang, S.H.1
-
18
-
-
0011089330
-
Linear multistep methods for Volterra integro-differential equations
-
Linz P. Linear multistep methods for Volterra integro-differential equations. J. Assoc. Comput. Mach. 16:1969;295-301.
-
(1969)
J. Assoc. Comput. Mach.
, vol.16
, pp. 295-301
-
-
Linz, P.1
-
19
-
-
0002643441
-
Spline collocation methods for Fredholm integro-differential equations of second order
-
Chuong N.M., Tuan N.V. Spline collocation methods for Fredholm integro-differential equations of second order. Acta Math. Vietnam. 20(1):1995;85-98.
-
(1995)
Acta Math. Vietnam.
, vol.20
, Issue.1
, pp. 85-98
-
-
Chuong, N.M.1
Tuan, N.V.2
-
20
-
-
84966207195
-
Convergence of a block-by-block method for nonlinear Volterra integro-differential equations
-
Makroglou A. Convergence of a block-by-block method for nonlinear Volterra integro-differential equations. Math. Comp. 35:1980;783-796.
-
(1980)
Math. Comp.
, vol.35
, pp. 783-796
-
-
Makroglou, A.1
-
21
-
-
84968475534
-
Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations
-
Crisci M.R. Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations. Math. Comput. 58(197):1992;119-134.
-
(1992)
Math. Comput.
, vol.58
, Issue.197
, pp. 119-134
-
-
Crisci, M.R.1
-
23
-
-
0000992795
-
The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in term of Taylor polynomials
-
Yalcinbas S., Sezer M. The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in term of Taylor polynomials. Appl. Math. Comput. 112:2000;291-308.
-
(2000)
Appl. Math. Comput.
, vol.112
, pp. 291-308
-
-
Yalcinbas, S.1
Sezer, M.2
|