메뉴 건너뛰기




Volumn 136, Issue 2-3, 2003, Pages 559-570

Numerical solution of a class of Integro-Differential equations by the Tau Method with an error estimation

Author keywords

Integro Differential equations; Tau Method

Indexed keywords

ALGORITHMS; ERROR ANALYSIS; LINEAR ALGEBRA; LINEAR EQUATIONS; POLYNOMIAL APPROXIMATION; PROBLEM SOLVING;

EID: 0037443341     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(02)00081-4     Document Type: Article
Times cited : (84)

References (24)
  • 1
    • 0019659830 scopus 로고
    • An operational approach to the Tau Method for the numerical solution of nonlinear differential equations
    • Ortiz E.L., Samara H. An operational approach to the Tau Method for the numerical solution of nonlinear differential equations. Computing. 27:1981;15-25.
    • (1981) Computing , vol.27 , pp. 15-25
    • Ortiz, E.L.1    Samara, H.2
  • 2
    • 85162699057 scopus 로고
    • Trigonometric interpolation of empirical and analytical functions
    • Lanczos C. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys. 17:1938;123-199.
    • (1938) J. Math. Phys. , vol.17 , pp. 123-199
    • Lanczos, C.1
  • 3
    • 0003167590 scopus 로고
    • Eigenvalue problems for singularly perturbed differential equations
    • Miller J.J.H. Dublin: Boole Press
    • Liu K.M., Ortiz E.L. Eigenvalue problems for singularly perturbed differential equations. Miller J.J.H. Proceedings of the BAIL II Conference. 1982;324-329 Boole Press, Dublin.
    • (1982) Proceedings of the BAIL II Conference , pp. 324-329
    • Liu, K.M.1    Ortiz, E.L.2
  • 4
    • 0003006282 scopus 로고
    • Approximation of eigenvalues defined by ordinary differential equations with the Tau Method
    • Ka gestrmB.RuheA. Berlin: Springer
    • Liu K.M., Ortiz E.L. Approximation of eigenvalues defined by ordinary differential equations with the Tau Method. Ka gestrm B., Ruhe A. Matrix Pencils. 1983;90-102 Springer, Berlin.
    • (1983) Matrix Pencils , pp. 90-102
    • Liu, K.M.1    Ortiz, E.L.2
  • 5
    • 38249034254 scopus 로고
    • Tau Method approximation of differential eigenvalue problems where the spectral parameter enters nonlinearly
    • Liu K.M., Ortiz E.L. Tau Method approximation of differential eigenvalue problems where the spectral parameter enters nonlinearly. J. Comput. Phys. 72:1987;299-310.
    • (1987) J. Comput. Phys. , vol.72 , pp. 299-310
    • Liu, K.M.1    Ortiz, E.L.2
  • 6
    • 0024775023 scopus 로고
    • Numerical solution of ordinary and partial function-differential eigenvalue problems with the Tau Method
    • Liu K.M., Ortiz E.L. Numerical solution of ordinary and partial function-differential eigenvalue problems with the Tau Method. Computing (wien). 41:1989;205-217.
    • (1989) Computing (wien) , vol.41 , pp. 205-217
    • Liu, K.M.1    Ortiz, E.L.2
  • 7
    • 0020905495 scopus 로고
    • Numerical solution of differential eigenvalue problems with an operational approach to the Tau Method
    • Ortiz E.L., Samara H. Numerical solution of differential eigenvalue problems with an operational approach to the Tau Method. Computing. 31:1983;95-103.
    • (1983) Computing , vol.31 , pp. 95-103
    • Ortiz, E.L.1    Samara, H.2
  • 8
    • 0022784186 scopus 로고
    • Numerical solution of eigenvalue problems for partial differential equations with the Tau-lines Method
    • Liu K.M., Ortiz E.L. Numerical solution of eigenvalue problems for partial differential equations with the Tau-lines Method. Comp. Math. Appl. B. 12(5/6):1986;1153-1168.
    • (1986) Comp. Math. Appl. B , vol.12 , Issue.5-6 , pp. 1153-1168
    • Liu, K.M.1    Ortiz, E.L.2
  • 10
    • 4244163123 scopus 로고
    • Numerical solution of nonlinear partial differential equations with Tau Method
    • Ortiz E.L., Pun K.S. Numerical solution of nonlinear partial differential equations with Tau Method. J. Comp. Appl. Math. 12/13:1985;511-516.
    • (1985) J. Comp. Appl. Math. , vol.12 , Issue.13 , pp. 511-516
    • Ortiz, E.L.1    Pun, K.S.2
  • 11
    • 0022782188 scopus 로고
    • A bi-dimensional Tau-Elements Method for the numerical solution of nonlinear partial differential equations with an application to Burgers' equation
    • Ortiz E.L., Pun K.S. A bi-dimensional Tau-Elements Method for the numerical solution of nonlinear partial differential equations with an application to Burgers' equation. Comp. Math. Appl. B. 12(5/6):1986;1225-1240.
    • (1986) Comp. Math. Appl. B , vol.12 , Issue.5-6 , pp. 1225-1240
    • Ortiz, E.L.1    Pun, K.S.2
  • 12
    • 0021177673 scopus 로고
    • Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau Method
    • Ortiz E.L., Samara H. Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau Method. Comp. Math. Appl. 10(1):1984;5-13.
    • (1984) Comp. Math. Appl. , vol.10 , Issue.1 , pp. 5-13
    • Ortiz, E.L.1    Samara, H.2
  • 13
    • 0031537729 scopus 로고    scopus 로고
    • Iterated solutions of linear operator equations with the Tau Method
    • EL-Daou M.K., Khajah H.G. Iterated solutions of linear operator equations with the Tau Method. Math. Comput. 66(217):1997;207-213.
    • (1997) Math. Comput. , vol.66 , Issue.217 , pp. 207-213
    • El-Daou, M.K.1    Khajah, H.G.2
  • 14
    • 0011108071 scopus 로고
    • Structure of recurrence relations in the study of stability in the numerical treatment of Volterra integral and integro-differential equations
    • Baker C.T.H. Structure of recurrence relations in the study of stability in the numerical treatment of Volterra integral and integro-differential equations. J. Integral Equations. 2:1980;11-29.
    • (1980) J. Integral Equations , vol.2 , pp. 11-29
    • Baker, C.T.H.1
  • 15
    • 0011085402 scopus 로고
    • On the stability of Volterra integral equations with separable kernels
    • Amini S. On the stability of Volterra integral equations with separable kernels. Appl. Anal. 24:1987;241-251.
    • (1987) Appl. Anal. , vol.24 , pp. 241-251
    • Amini, S.1
  • 16
    • 0001676643 scopus 로고
    • Superconvergence of collocation methods for Volterra and Abel integral equations of second kind
    • Brunner H., Norsett P. Superconvergence of collocation methods for Volterra and Abel integral equations of second kind. Numer. Math. 36:1981;347-358.
    • (1981) Numer. Math. , vol.36 , pp. 347-358
    • Brunner, H.1    Norsett, P.2
  • 17
    • 84966253280 scopus 로고
    • On certain extrapolation methods for the numerical solution of integro-differential equations
    • Chang S.H. On certain extrapolation methods for the numerical solution of integro-differential equations. Math. Comp. 39:1982;165-171.
    • (1982) Math. Comp. , vol.39 , pp. 165-171
    • Chang, S.H.1
  • 18
    • 0011089330 scopus 로고
    • Linear multistep methods for Volterra integro-differential equations
    • Linz P. Linear multistep methods for Volterra integro-differential equations. J. Assoc. Comput. Mach. 16:1969;295-301.
    • (1969) J. Assoc. Comput. Mach. , vol.16 , pp. 295-301
    • Linz, P.1
  • 19
    • 0002643441 scopus 로고
    • Spline collocation methods for Fredholm integro-differential equations of second order
    • Chuong N.M., Tuan N.V. Spline collocation methods for Fredholm integro-differential equations of second order. Acta Math. Vietnam. 20(1):1995;85-98.
    • (1995) Acta Math. Vietnam. , vol.20 , Issue.1 , pp. 85-98
    • Chuong, N.M.1    Tuan, N.V.2
  • 20
    • 84966207195 scopus 로고
    • Convergence of a block-by-block method for nonlinear Volterra integro-differential equations
    • Makroglou A. Convergence of a block-by-block method for nonlinear Volterra integro-differential equations. Math. Comp. 35:1980;783-796.
    • (1980) Math. Comp. , vol.35 , pp. 783-796
    • Makroglou, A.1
  • 21
    • 84968475534 scopus 로고
    • Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations
    • Crisci M.R. Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations. Math. Comput. 58(197):1992;119-134.
    • (1992) Math. Comput. , vol.58 , Issue.197 , pp. 119-134
    • Crisci, M.R.1
  • 23
    • 0000992795 scopus 로고    scopus 로고
    • The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in term of Taylor polynomials
    • Yalcinbas S., Sezer M. The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in term of Taylor polynomials. Appl. Math. Comput. 112:2000;291-308.
    • (2000) Appl. Math. Comput. , vol.112 , pp. 291-308
    • Yalcinbas, S.1    Sezer, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.