메뉴 건너뛰기




Volumn 27, Issue 2, 2003, Pages 145-154

Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases

Author keywords

Integral differential equations; Tau method

Indexed keywords

INTEGRODIFFERENTIAL EQUATIONS; POLYNOMIALS;

EID: 0037293897     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0307-904X(02)00099-9     Document Type: Article
Times cited : (93)

References (19)
  • 2
    • 0019659830 scopus 로고
    • An operational approach to the Tau method for the numerical solution of nonlinear differential equations
    • E.L. Ortiz, L. Samara, An operational approach to the Tau method for the numerical solution of nonlinear differential equations, Computing 27 (1981) 15-25.
    • (1981) Computing , vol.27 , pp. 15-25
    • Ortiz, E.L.1    Samara, L.2
  • 3
    • 20244383003 scopus 로고
    • Numerical solution of feedback control systems equations
    • M. Hosseini Aliabadi, E.L. Ortiz, Numerical solution of feedback control systems equations, Appl. Math. Lett. 1 (1) (1988) 3-6.
    • (1988) Appl. Math. Lett. , vol.1 , Issue.1 , pp. 3-6
    • Hosseini Aliabadi, M.1    Ortiz, E.L.2
  • 4
    • 0032041217 scopus 로고    scopus 로고
    • Numerical treatment of moving free boundary value problems with the Tau method
    • M. Hosseini Aliabadi, E.L. Ortiz, Numerical treatment of moving and free boundary value problems with the Tau method, Comput. Math. Appl. 35 (8) (1998) 53-61.
    • (1998) Comput. Math. Appl. , vol.35 , Issue.8 , pp. 53-61
    • Hosseini Aliabadi, M.1    Ortiz, E.L.2
  • 5
    • 0033226060 scopus 로고    scopus 로고
    • The automatic solution system of ordinary differential equations by the Tau method
    • K.M. Liu, C.K. Pan, The automatic solution system of ordinary differential equations by the Tau method, Comput. Math. Appl. 38 (1999) 197-210.
    • (1999) Comput. Math. Appl. , vol.38 , pp. 197-210
    • Liu, K.M.1    Pan, C.K.2
  • 6
    • 20244377708 scopus 로고    scopus 로고
    • The Buchstab's function and the operational Tau method
    • M. Hosseini Aliabadi, The Buchstab's function and the operational Tau method, Korean J. Comput. Appl. Math. 7 (3) (2000) 673-683.
    • (2000) Korean J. Comput. Appl. Math. , vol.7 , Issue.3 , pp. 673-683
    • Hosseini Aliabadi, M.1
  • 7
    • 20244371535 scopus 로고    scopus 로고
    • The application of the operational Tau method on some stiff system of ODEs
    • M. Hosseini Aliabadi, The application of the operational Tau method on some stiff system of ODEs, Int. J. Appl. Math. 2 (9) (2000) 1027-1036.
    • (2000) Int. J. Appl. Math. , vol.2 , Issue.9 , pp. 1027-1036
    • Hosseini Aliabadi, M.1
  • 8
    • 20244371197 scopus 로고    scopus 로고
    • Solving ODE BVPs using the perturbation term of the Tau method over semi-infinite intervals
    • M. Hosseini Aliabadi, Solving ODE BVPs using the perturbation term of the Tau method over semi-infinite intervals, Far East J. Appl. Math. 4 (3) (2000) 295-303.
    • (2000) Far East J. Appl. Math. , vol.4 , Issue.3 , pp. 295-303
    • Hosseini Aliabadi, M.1
  • 9
    • 0021177673 scopus 로고
    • Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method
    • E.L. Ortiz, H. Samara, Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method, Comput. Math. Appl. 10 (1) (1984) 5-13.
    • (1984) Comput. Math. Appl. , vol.10 , Issue.1 , pp. 5-13
    • Ortiz, E.L.1    Samara, H.2
  • 10
    • 0012234119 scopus 로고
    • A Tau method based on non-uniform space time elements for the numerical simulation of solitons
    • M. Hosseini Aliabadi, E.L. Ortiz, A Tau method based on non-uniform space time elements for the numerical simulation of solitons, Comput. Math. Appl. 22 (9) (1991) 7-19.
    • (1991) Comput. Math. Appl. , vol.22 , Issue.9 , pp. 7-19
    • Hosseini Aliabadi, M.1    Ortiz, E.L.2
  • 13
    • 0002643441 scopus 로고
    • Spline collocation methods for Fredholm integro-differential equations of second order
    • N.M. Chuong, N.V. Tuan, Spline collocation methods for Fredholm integro-differential equations of second order, Acta Math. Vietnamica 20 (1) (1995) 85-98.
    • (1995) Acta Math. Vietnamica , vol.20 , Issue.1 , pp. 85-98
    • Chuong, N.M.1    Tuan, N.V.2
  • 14
    • 20244370227 scopus 로고    scopus 로고
    • Spline collocation methods for Fredholm-Volterra integro-differential equations of high order
    • N.M. Chuong, N.V. Tuan, Spline collocation methods for Fredholm-Volterra integro-differential equations of high order, Vietnam J. Math. 25 (1) (1997) 15-24.
    • (1997) Vietnam J. Math. , vol.25 , Issue.1 , pp. 15-24
    • Chuong, N.M.1    Tuan, N.V.2
  • 15
    • 84968475534 scopus 로고
    • Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations
    • M.R. Crisci, Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations, Math. Comput. 58 (197) (1992) 119-134.
    • (1992) Math. Comput. , vol.58 , Issue.197 , pp. 119-134
    • Crisci, M.R.1
  • 16
    • 0031537729 scopus 로고    scopus 로고
    • Iterated solutions of linear operator equations with the Tau method
    • M.K. EL-Daou, H.G. Khajah, Iterated solutions of linear operator equations with the Tau method, Math. Comput. 66 (217) (1997) 207-213.
    • (1997) Math. Comput. , vol.66 , Issue.217 , pp. 207-213
    • El-Daou, M.K.1    Khajah, H.G.2
  • 17
    • 84968466213 scopus 로고
    • Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind
    • H. Kaniko, Y. Xu, Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind, Math. Comput. 62 (206) (1994) 739-753.
    • (1994) Math. Comput. , vol.62 , Issue.206 , pp. 739-753
    • Kaniko, H.1    Xu, Y.2
  • 18
    • 0000992795 scopus 로고    scopus 로고
    • The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials
    • S. Yalcinbas, M. Sezer, The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000) 291-308.
    • (2000) Appl. Math. Comput. , vol.112 , pp. 291-308
    • S. Yalcinbas1    Sezer, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.