-
1
-
-
38249014608
-
Implicitly linear collocation methods for nonlinear Volterra equations
-
Brunner, H.: Implicitly linear collocation methods for nonlinear Volterra equations. Appl. Numer. Math. 9, 235-247 (1992).
-
(1992)
Appl. Numer. Math.
, vol.9
, pp. 235-247
-
-
Brunner, H.1
-
2
-
-
0040639282
-
Numerical solvability of Hammerstein integral equations of mixed type
-
Ganesh, M., Joshi, M.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21-31 (1991).
-
(1991)
IMA J. Numer. Anal.
, vol.11
, pp. 21-31
-
-
Ganesh, M.1
Joshi, M.2
-
3
-
-
21844509874
-
The numerical solution of a nonlinear boundary integral integral equation on smooth surfaces
-
Atkinson, K. E.: The numerical solution of a nonlinear boundary integral integral equation on smooth surfaces. IMA J. Numer. Anal. 14, 461-483 (1994).
-
(1994)
IMA J. Numer. Anal.
, vol.14
, pp. 461-483
-
-
Atkinson, K.E.1
-
4
-
-
0035148098
-
Adomian's method for Hammerstein integral equations arising from chemical reactor theory
-
Madbouly, N. M., McGhee, D. F., Roach, G. F.: Adomian's method for Hammerstein integral equations arising from chemical reactor theory. Appl. Math. Comput. 117, 241-249 (2001).
-
(2001)
Appl. Math. Comput.
, vol.117
, pp. 241-249
-
-
Madbouly, N.M.1
McGhee, D.F.2
Roach, G.F.3
-
5
-
-
38248999258
-
Asymptotic error expansion of a collocation type method for Volterra-Hammerstein integral equations
-
Guo Qiang, H.: Asymptotic error expansion of a collocation type method for Volterra-Hammerstein integral equations. Appl. Numer. Math. 13, 357-369 (1993).
-
(1993)
Appl. Numer. Math.
, vol.13
, pp. 357-369
-
-
Guo Qiang, H.1
-
6
-
-
0030394703
-
Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations
-
Elnagar, G. N., Kazemi, M.: Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations. J. Comput. Appl. Math. 76, 147-158 (1996).
-
(1996)
J. Comput. Appl. Math.
, vol.76
, pp. 147-158
-
-
Elnagar, G.N.1
Kazemi, M.2
-
7
-
-
0345854819
-
Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions
-
Razzaghi, M., Ordokhani, Y.: Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions. Math. Probl. Eng. 7, 205-219 (2001).
-
(2001)
Math. Probl. Eng.
, vol.7
, pp. 205-219
-
-
Razzaghi, M.1
Ordokhani, Y.2
-
8
-
-
25144500559
-
Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation
-
Shahmorad, S.: Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 167, 1418-1429 (2005).
-
(2005)
Appl. Math. Comput.
, vol.167
, pp. 1418-1429
-
-
Shahmorad, S.1
-
9
-
-
0037293897
-
Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases
-
Hossieni, S. M., Shahmorad, S.: Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases. Appl. Math. Model. 27, 145-154 (2003).
-
(2003)
Appl. Math. Model.
, vol.27
, pp. 145-154
-
-
Hossieni, S.M.1
Shahmorad, S.2
-
10
-
-
26844460725
-
Numerical solution of Volterra integro-differential equations by the Tau method with the Chebyshev and Legendre bases
-
Pour-Mahmoud, J., Rahimi-Ardebili, M. Y., Shahmorad, S.: Numerical solution of Volterra integro-differential equations by the Tau method with the Chebyshev and Legendre bases. Appl. Math. Comput. 170, 314-338 (2005).
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 314-338
-
-
Pour-Mahmoud, J.1
Rahimi-Ardebili, M.Y.2
Shahmorad, S.3
-
11
-
-
26844574361
-
Numerical piecewise approximate solution of Fredholm integro-differential equations by the Tau method
-
Hossieni, S. M., Shahmorad, S.: Numerical piecewise approximate solution of Fredholm integro-differential equations by the Tau method. Appl. Math. Model. 29, 1005-1021 (2005).
-
(2005)
Appl. Math. Model.
, vol.29
, pp. 1005-1021
-
-
Hossieni, S.M.1
Shahmorad, S.2
-
12
-
-
0037089760
-
Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations
-
Yalcinbas, S.: Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 127, 195-206 (2002).
-
(2002)
Appl. Math. Comput.
, vol.127
, pp. 195-206
-
-
Yalcinbas, S.1
-
13
-
-
0019659830
-
An operational approach to the Tau method for the numerical solution of nonlinear differential equations
-
Ortiz, E. L., Samara, H.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27, 15-25 (1981).
-
(1981)
Computing
, vol.27
, pp. 15-25
-
-
Ortiz, E.L.1
Samara, H.2
-
14
-
-
0020905495
-
Numerical solution of differential eigenvalue problems with an operational approach to the Tau method
-
Ortiz, E. L., Samara, H.: Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. Computing 31, 95-103 (1983).
-
(1983)
Computing
, vol.31
, pp. 95-103
-
-
Ortiz, E.L.1
Samara, H.2
-
15
-
-
0021177673
-
Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method
-
Ortiz, E. L., Samara, H.: Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method. Comput. Math. Appl. 10, 5-13 (1984).
-
(1984)
Comput. Math. Appl.
, vol.10
, pp. 5-13
-
-
Ortiz, E.L.1
Samara, H.2
-
16
-
-
28244469735
-
A reliable computational approach for approximate solution of Hammerstein integral equations of mixed type
-
Hadizadeh, M., Azizi, R.: A reliable computational approach for approximate solution of Hammerstein integral equations of mixed type. Int. J. Computer. Math. 81(7), 889-900 (2004).
-
(2004)
Int. J. Computer. Math.
, vol.81
, Issue.7
, pp. 889-900
-
-
Hadizadeh, M.1
Azizi, R.2
-
17
-
-
0031537729
-
Iterated solutions of linear operator equations with the Tau method
-
El-Daou, M. K., Khajah, H. G.: Iterated solutions of linear operator equations with the Tau method. Math. Comput. 66(217), 207-213 (1997).
-
(1997)
Math. Comput.
, vol.66
, Issue.217
, pp. 207-213
-
-
El-Daou, M.K.1
Khajah, H.G.2
-
18
-
-
33750616683
-
The weighted subspace of the Tau method and orthogonal collocation
-
El-Daou, M. K., Ortiz, E. L.: The weighted subspace of the Tau method and orthogonal collocation. J. Math. Anal. Appl. 326, 622-631 (2007).
-
(2007)
J. Math. Anal. Appl.
, vol.326
, pp. 622-631
-
-
El-Daou, M.K.1
Ortiz, E.L.2
-
19
-
-
0012614174
-
A note on the integral formulation of Kumar and Sloan
-
Frankel, J. I.: A note on the integral formulation of Kumar and Sloan. J. Comput. Appl. Math. 61, 263-274 (1995).
-
(1995)
J. Comput. Appl. Math.
, vol.61
, pp. 263-274
-
-
Frankel, J.I.1
-
21
-
-
0017745277
-
A model for the spatial spread of an epidemic
-
Thieme, H. R.: A model for the spatial spread of an epidemic. J. Math. Biol. 4, 337-351 (1977).
-
(1977)
J. Math. Biol.
, vol.4
, pp. 337-351
-
-
Thieme, H.R.1
-
22
-
-
0031625843
-
The Tau method as an analytic tool in the discussion of equivalence results across numerical methods
-
El-Daou, M. K., Ortiz, E. L.: The Tau method as an analytic tool in the discussion of equivalence results across numerical methods. Computing 60, 365-376 (1998).
-
(1998)
Computing
, vol.60
, pp. 365-376
-
-
El-Daou, M.K.1
Ortiz, E.L.2
-
24
-
-
0040092453
-
Some extensions of the Lanczos-Ortiz theory of canonical polynomials in the Tau method
-
Froes Bunchaft, M. E.: Some extensions of the Lanczos-Ortiz theory of canonical polynomials in the Tau method. Math. Comput. 66(218), 609-621 (1997).
-
(1997)
Math. Comput.
, vol.66
, Issue.218
, pp. 609-621
-
-
Froes Bunchaft, M.E.1
|