메뉴 건너뛰기




Volumn 52, Issue 4, 2009, Pages 541-559

Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations

Author keywords

Algebraic nonlinearity; Numerical treatments; Operational Tau method; Polynomial approximation; Volterra Hammerstein integral equations

Indexed keywords


EID: 76149085866     PISSN: 10171398     EISSN: 15729265     Source Type: Journal    
DOI: 10.1007/s11075-009-9297-9     Document Type: Article
Times cited : (41)

References (24)
  • 1
    • 38249014608 scopus 로고
    • Implicitly linear collocation methods for nonlinear Volterra equations
    • Brunner, H.: Implicitly linear collocation methods for nonlinear Volterra equations. Appl. Numer. Math. 9, 235-247 (1992).
    • (1992) Appl. Numer. Math. , vol.9 , pp. 235-247
    • Brunner, H.1
  • 2
    • 0040639282 scopus 로고
    • Numerical solvability of Hammerstein integral equations of mixed type
    • Ganesh, M., Joshi, M.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21-31 (1991).
    • (1991) IMA J. Numer. Anal. , vol.11 , pp. 21-31
    • Ganesh, M.1    Joshi, M.2
  • 3
    • 21844509874 scopus 로고
    • The numerical solution of a nonlinear boundary integral integral equation on smooth surfaces
    • Atkinson, K. E.: The numerical solution of a nonlinear boundary integral integral equation on smooth surfaces. IMA J. Numer. Anal. 14, 461-483 (1994).
    • (1994) IMA J. Numer. Anal. , vol.14 , pp. 461-483
    • Atkinson, K.E.1
  • 4
    • 0035148098 scopus 로고    scopus 로고
    • Adomian's method for Hammerstein integral equations arising from chemical reactor theory
    • Madbouly, N. M., McGhee, D. F., Roach, G. F.: Adomian's method for Hammerstein integral equations arising from chemical reactor theory. Appl. Math. Comput. 117, 241-249 (2001).
    • (2001) Appl. Math. Comput. , vol.117 , pp. 241-249
    • Madbouly, N.M.1    McGhee, D.F.2    Roach, G.F.3
  • 5
    • 38248999258 scopus 로고
    • Asymptotic error expansion of a collocation type method for Volterra-Hammerstein integral equations
    • Guo Qiang, H.: Asymptotic error expansion of a collocation type method for Volterra-Hammerstein integral equations. Appl. Numer. Math. 13, 357-369 (1993).
    • (1993) Appl. Numer. Math. , vol.13 , pp. 357-369
    • Guo Qiang, H.1
  • 6
    • 0030394703 scopus 로고    scopus 로고
    • Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations
    • Elnagar, G. N., Kazemi, M.: Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations. J. Comput. Appl. Math. 76, 147-158 (1996).
    • (1996) J. Comput. Appl. Math. , vol.76 , pp. 147-158
    • Elnagar, G.N.1    Kazemi, M.2
  • 7
    • 0345854819 scopus 로고    scopus 로고
    • Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions
    • Razzaghi, M., Ordokhani, Y.: Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions. Math. Probl. Eng. 7, 205-219 (2001).
    • (2001) Math. Probl. Eng. , vol.7 , pp. 205-219
    • Razzaghi, M.1    Ordokhani, Y.2
  • 8
    • 25144500559 scopus 로고    scopus 로고
    • Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation
    • Shahmorad, S.: Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 167, 1418-1429 (2005).
    • (2005) Appl. Math. Comput. , vol.167 , pp. 1418-1429
    • Shahmorad, S.1
  • 9
    • 0037293897 scopus 로고    scopus 로고
    • Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases
    • Hossieni, S. M., Shahmorad, S.: Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases. Appl. Math. Model. 27, 145-154 (2003).
    • (2003) Appl. Math. Model. , vol.27 , pp. 145-154
    • Hossieni, S.M.1    Shahmorad, S.2
  • 10
    • 26844460725 scopus 로고    scopus 로고
    • Numerical solution of Volterra integro-differential equations by the Tau method with the Chebyshev and Legendre bases
    • Pour-Mahmoud, J., Rahimi-Ardebili, M. Y., Shahmorad, S.: Numerical solution of Volterra integro-differential equations by the Tau method with the Chebyshev and Legendre bases. Appl. Math. Comput. 170, 314-338 (2005).
    • (2005) Appl. Math. Comput. , vol.170 , pp. 314-338
    • Pour-Mahmoud, J.1    Rahimi-Ardebili, M.Y.2    Shahmorad, S.3
  • 11
    • 26844574361 scopus 로고    scopus 로고
    • Numerical piecewise approximate solution of Fredholm integro-differential equations by the Tau method
    • Hossieni, S. M., Shahmorad, S.: Numerical piecewise approximate solution of Fredholm integro-differential equations by the Tau method. Appl. Math. Model. 29, 1005-1021 (2005).
    • (2005) Appl. Math. Model. , vol.29 , pp. 1005-1021
    • Hossieni, S.M.1    Shahmorad, S.2
  • 12
    • 0037089760 scopus 로고    scopus 로고
    • Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations
    • Yalcinbas, S.: Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 127, 195-206 (2002).
    • (2002) Appl. Math. Comput. , vol.127 , pp. 195-206
    • Yalcinbas, S.1
  • 13
    • 0019659830 scopus 로고
    • An operational approach to the Tau method for the numerical solution of nonlinear differential equations
    • Ortiz, E. L., Samara, H.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27, 15-25 (1981).
    • (1981) Computing , vol.27 , pp. 15-25
    • Ortiz, E.L.1    Samara, H.2
  • 14
    • 0020905495 scopus 로고
    • Numerical solution of differential eigenvalue problems with an operational approach to the Tau method
    • Ortiz, E. L., Samara, H.: Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. Computing 31, 95-103 (1983).
    • (1983) Computing , vol.31 , pp. 95-103
    • Ortiz, E.L.1    Samara, H.2
  • 15
    • 0021177673 scopus 로고
    • Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method
    • Ortiz, E. L., Samara, H.: Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method. Comput. Math. Appl. 10, 5-13 (1984).
    • (1984) Comput. Math. Appl. , vol.10 , pp. 5-13
    • Ortiz, E.L.1    Samara, H.2
  • 16
    • 28244469735 scopus 로고    scopus 로고
    • A reliable computational approach for approximate solution of Hammerstein integral equations of mixed type
    • Hadizadeh, M., Azizi, R.: A reliable computational approach for approximate solution of Hammerstein integral equations of mixed type. Int. J. Computer. Math. 81(7), 889-900 (2004).
    • (2004) Int. J. Computer. Math. , vol.81 , Issue.7 , pp. 889-900
    • Hadizadeh, M.1    Azizi, R.2
  • 17
    • 0031537729 scopus 로고    scopus 로고
    • Iterated solutions of linear operator equations with the Tau method
    • El-Daou, M. K., Khajah, H. G.: Iterated solutions of linear operator equations with the Tau method. Math. Comput. 66(217), 207-213 (1997).
    • (1997) Math. Comput. , vol.66 , Issue.217 , pp. 207-213
    • El-Daou, M.K.1    Khajah, H.G.2
  • 18
    • 33750616683 scopus 로고    scopus 로고
    • The weighted subspace of the Tau method and orthogonal collocation
    • El-Daou, M. K., Ortiz, E. L.: The weighted subspace of the Tau method and orthogonal collocation. J. Math. Anal. Appl. 326, 622-631 (2007).
    • (2007) J. Math. Anal. Appl. , vol.326 , pp. 622-631
    • El-Daou, M.K.1    Ortiz, E.L.2
  • 19
    • 0012614174 scopus 로고
    • A note on the integral formulation of Kumar and Sloan
    • Frankel, J. I.: A note on the integral formulation of Kumar and Sloan. J. Comput. Appl. Math. 61, 263-274 (1995).
    • (1995) J. Comput. Appl. Math. , vol.61 , pp. 263-274
    • Frankel, J.I.1
  • 21
    • 0017745277 scopus 로고
    • A model for the spatial spread of an epidemic
    • Thieme, H. R.: A model for the spatial spread of an epidemic. J. Math. Biol. 4, 337-351 (1977).
    • (1977) J. Math. Biol. , vol.4 , pp. 337-351
    • Thieme, H.R.1
  • 22
    • 0031625843 scopus 로고    scopus 로고
    • The Tau method as an analytic tool in the discussion of equivalence results across numerical methods
    • El-Daou, M. K., Ortiz, E. L.: The Tau method as an analytic tool in the discussion of equivalence results across numerical methods. Computing 60, 365-376 (1998).
    • (1998) Computing , vol.60 , pp. 365-376
    • El-Daou, M.K.1    Ortiz, E.L.2
  • 24
    • 0040092453 scopus 로고    scopus 로고
    • Some extensions of the Lanczos-Ortiz theory of canonical polynomials in the Tau method
    • Froes Bunchaft, M. E.: Some extensions of the Lanczos-Ortiz theory of canonical polynomials in the Tau method. Math. Comput. 66(218), 609-621 (1997).
    • (1997) Math. Comput. , vol.66 , Issue.218 , pp. 609-621
    • Froes Bunchaft, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.