메뉴 건너뛰기




Volumn 49, Issue 11 PART 1, 2011, Pages 4298-4306

Pixel-unmixing moderate-resolution remote sensing imagery using pairwise coupling support vector machines: A case study

Author keywords

Pairwise coupling (PWC); pixel unmixing; support vector machines (SVMs)

Indexed keywords

CLASSIFICATION RESULTS; CONSTRAINED LEAST SQUARES METHOD; HIGH RESOLUTION; LAND USE/LAND COVER; PAIRWISE COUPLINGS; PIXEL UNMIXING; REMOTE SENSING IMAGERY; REMOTE SENSING IMAGES; SUPPORT VECTOR; UNMIXING;

EID: 80455173939     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2161995     Document Type: Article
Times cited : (9)

References (48)
  • 1
  • 2
    • 34548350474 scopus 로고    scopus 로고
    • Improving urban classification through fuzzy supervised classification and spectral mixture analysis
    • DOI 10.1080/01431160701227687, PII 781533541
    • J. Tang, L. Wang, and S. W. Myint, Improving urban classification through fuzzy supervised classification and spectral mixture analysis, Int. J. Remote Sens., vol. 28, no. 18, pp. 4047-4063, Sep. 2007 (Pubitemid 47343431)
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.18 , pp. 4047-4063
    • Tang, J.1    Wang, L.2    Myint, S.W.3
  • 3
    • 14744289023 scopus 로고    scopus 로고
    • Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability?
    • DOI 10.1016/j.rse.2005.01.002, PII S0034425705000271
    • C. Song, Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability?, Remote Sens. Environ., vol. 95, no. 2, pp. 248-263, Mar. 2005 (Pubitemid 40328616)
    • (2005) Remote Sensing of Environment , vol.95 , Issue.2 , pp. 248-263
    • Song, C.1
  • 4
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms for hyperspectral data
    • Mar
    • A. Plaza, P. Martnez, R. Pérez, and J. Plaza, A quantitative and comparative analysis of endmember extraction algorithms for hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martnez, P.2    Pérez, R.3    Plaza, J.4
  • 5
    • 0001473286 scopus 로고
    • Bidirectional reflectance spectroscopy 1. Theory
    • B. Hapke, Bidirectional reflectance spectroscopy 1. Theory, J. Geophy. Res., vol. 86, no. B4, pp. 3039-3054, 1981
    • (1981) J. Geophy. Res , vol.86 , Issue.B4 , pp. 3039-3054
    • Hapke, B.1
  • 6
    • 80455124423 scopus 로고    scopus 로고
    • Retrieving sub-pixel land cover composition through an effective integration of the spatial, spectral and temporal dimensions of MERIS imagery
    • R. Z. Milla, J. G. P. W. Clevers, M. E. Schaepman, and A. J. Plaza, Retrieving sub-pixel land cover composition through an effective integration of the spatial, spectral and temporal dimensions of MERIS imagery, J. Remote Sens., vol. 11, no. 5, pp. 659-668, 2007
    • (2007) J. Remote Sens , vol.11 , Issue.5 , pp. 659-668
    • Milla, R.Z.1    Clevers, J.G.P.W.2    Schaepman, M.E.3    Plaza, A.J.4
  • 7
    • 40449093630 scopus 로고    scopus 로고
    • Mixed pixels classification of remote sensing images based on cellular automata
    • Feb
    • X. H. Wang, J. M. Guo, B. J. Jia, and Y. K. Zhang, Mixed pixels classification of remote sensing images based on cellular automata, Acta Geodaetica et Cartographica Sinica, vol. 37, no. 1, pp. 42-48, Feb. 2008
    • (2008) Acta Geodaetica et Cartographica Sinica , vol.37 , Issue.1 , pp. 42-48
    • Wang, X.H.1    Guo, J.M.2    Jia, B.J.3    Zhang, Y.K.4
  • 9
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E.Winter, N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data, in Proc. SPIE-Imaging Spectrometry V,1999, pp. 266-275
    • (1999) Proc. SPIE-Imaging Spectrometry v , pp. 266-275
    • Winter, M.E.1
  • 11
    • 61349196839 scopus 로고    scopus 로고
    • Support vector machine-based endmember extraction
    • Mar
    • A. M. Fillippi and R. Archibald, Support vector machine-based endmember extraction, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 771- 791, Mar. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.3 , pp. 771-791
    • Fillippi, A.M.1    Archibald, R.2
  • 12
    • 77958527190 scopus 로고    scopus 로고
    • Real-time simplex growing algorithms for hyperspectral endmember extraction
    • Apr.
    • C. I. Chein, C. C. Wu, C. S. Lo, and M. L. Chang, Real-time simplex growing algorithms for hyperspectral endmember extraction, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4, pp. 1834-1850, Apr. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.4 , pp. 1834-1850
    • Chein, C.I.1    Wu, C.C.2    Lo, C.S.3    Chang, M.L.4
  • 13
    • 0030292138 scopus 로고    scopus 로고
    • Linear spectral mixture modeling to estimate vegetation amount from optical spectral data
    • F. J. Garcia-Haro, M. A. Gilabert, and J. Melia, Linear spectral mixture modeling to estimate vegetation amount from optical spectral data, Int. J. Remote Sens., vol. 17, no. 17, pp. 3373-3400, 1996
    • (1996) Int. J. Remote Sens , vol.17 , Issue.17 , pp. 3373-3400
    • Garcia-Haro, F.J.1    Gilabert, M.A.2    Melia, J.3
  • 14
    • 0037381086 scopus 로고    scopus 로고
    • Estimating impervious surface distribution by spectral mixture analysis
    • DOI 10.1016/S0034-4257(02)00136-0, PII S0034425702001360
    • C. S. Wu and A. T. Murray, Estimating impervious surface distribution by spectral mixture analysis, Remote Sens. Environ., vol. 84, no. 4, pp. 493-505, Apr. 2003 (Pubitemid 36360511)
    • (2003) Remote Sensing of Environment , vol.84 , Issue.4 , pp. 493-505
    • Wu, C.1    Murray, A.T.2
  • 15
    • 7444231656 scopus 로고    scopus 로고
    • Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery
    • Dec
    • C. S. Wu, Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery, Remote Sens. Environ., vol. 93, no. 4, pp. 480-492, Dec. 2004
    • (2004) Remote Sens. Environ , vol.93 , Issue.4 , pp. 480-492
    • Wu, C.S.1
  • 16
    • 34347214788 scopus 로고    scopus 로고
    • Using multispectral imagery and linear spectral unmixing techniques for estimating crop yield variability
    • C. Yang, J. H. Everitt, and J. M. Bradford, Using multispectral imagery and linear spectral unmixing techniques for estimating crop yield variability, Trans. ASABE, vol. 50, no. 2, pp. 667-674, Mar. 2007 (Pubitemid 46996934)
    • (2007) Transactions of the ASABE , vol.50 , Issue.2 , pp. 667-674
    • Yang, C.1    Everitt, J.H.2    Bradford, J.M.3
  • 17
    • 33644652997 scopus 로고    scopus 로고
    • Unmixing of hyperspectral imagery based on probabilistic outputs of support vector machines
    • Jan
    • B. Wu, L. P. Zhang, and P. X. Li, Unmixing of hyperspectral imagery based on probabilistic outputs of support vector machines, Geomatics Inf. Sci. Wuhan Univ., vol. 31, no. 1, pp. 52-54, Jan. 2006
    • (2006) Geomatics Inf. Sci. Wuhan Univ , vol.31 , Issue.1 , pp. 52-54
    • Wu, B.1    Zhang, L.P.2    Li, P.X.3
  • 18
    • 67651155779 scopus 로고    scopus 로고
    • Integration of soft and hard classification using extended support vector machines
    • Jul
    • L. G.Wang and X. P. Jia, Integration of soft and hard classification using extended support vector machines, IEEE Trans. Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 543-547, Jul. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens. Lett , vol.6 , Issue.3 , pp. 543-547
    • Wang, L.G.1    Jia, X.P.2
  • 19
    • 0032505168 scopus 로고    scopus 로고
    • Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution
    • G. M. Foody, Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution, Int. J. Remote Sens., vol. 19, no. 13, pp. 2593-2599, 1998 (Pubitemid 28560708)
    • (1998) International Journal of Remote Sensing , vol.19 , Issue.13 , pp. 2593-2599
    • Foody, G.M.1
  • 20
    • 21744459008 scopus 로고    scopus 로고
    • Fully fuzzy supervised classification of land cover from remotely sensed imagery with an artificial neural network
    • G. M. Foody, Fully fuzzy supervised classification of land cover from remotely sensed imagery with an artificial neural network, Neural Comput. Appl., vol. 5, no. 4, pp. 238-247, 1997
    • (1997) Neural Comput. Appl , vol.5 , Issue.4 , pp. 238-247
    • Foody, G.M.1
  • 21
    • 0033231469 scopus 로고    scopus 로고
    • A neural network method for mixture estimation for vegetation mapping
    • Nov
    • G. A. Carpenter, S. Gopal, S. Macomber, S. Martens, and C. E. Woodcock, A neural network method for mixture estimation for vegetation mapping, Remote Sens. Environ., vol. 70, no. 2, pp. 138- 152, Nov. 1999
    • (1999) Remote Sens. Environ , vol.70 , Issue.2 , pp. 138-152
    • Carpenter, G.A.1    Gopal, S.2    MacOmber, S.3    Martens, S.4    Woodcock, C.E.5
  • 22
    • 4744338772 scopus 로고    scopus 로고
    • ART-MMAP: A neural network approach to subpixel classification
    • Sep
    • W. G. Liu, K. C. Seto, E. Y. Wu, S. Gopal, and C. E. Woodcock, ART-MMAP: A neural network approach to subpixel classification, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 9, pp. 1976-1983, Sep. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.9 , pp. 1976-1983
    • Liu, W.G.1    Seto, K.C.2    Wu, E.Y.3    Gopal, S.4    Woodcock, C.E.5
  • 23
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
    • Jul
    • N. Dobigeon, J. Y. Tourneret, and C. I. Chang, Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery, IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2695, Jul. 2008
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.Y.2    Chang, C.I.3
  • 24
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 25
    • 0033719885 scopus 로고    scopus 로고
    • Constrained subpixel target detection for remotely sensed imagery
    • May
    • C. I. Chang and D. C. Heinz, Constrained subpixel target detection for remotely sensed imagery, IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1144-1159, May 2000
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.3 , pp. 1144-1159
    • Chang, C.I.1    Heinz, D.C.2
  • 27
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C. I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 29
    • 33748946539 scopus 로고    scopus 로고
    • Discriminating fire detection via support vector machines
    • DOI 10.1007/11816492-24, Intelligent Control and Automation: International Conference on Intelligent Computing, ICIC 2006
    • H. S. Wang, S. B. Zheng, C. Chen, W. B. Yang, L. Wu, X. Cheng, M. R. Fei, and C. P. Hu, Discriminating fire detection via support vector machines, Intell. Control Autom., vol. 344, pp. 176-181, 2006 (Pubitemid 44431694)
    • (2006) Lecture Notes in Control and Information Sciences , vol.344 , pp. 176-181
    • Wang, H.1    Zheng, S.2    Chen, C.3    Yang, W.4    Wu, L.5    Cheng, X.6    Fei, M.7    Hu, C.8
  • 30
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Oct
    • J. A. Gualtieri and R. F. Cromp, Support vector machines for hyperspectral remote sensing classification, in Proc. SPIE, Oct. 1998, vol. 3584, pp. 221-232
    • (1998) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 32
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • DOI 10.1080/01431160110040323
    • C. Huang, L. S. Davis, and J. R. G. Townshend, An assessment of support vector machines for land cover classification, Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, 2002 (Pubitemid 34119904)
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 33
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
    • DOI 10.1016/j.rse.2006.04.001, PII S0034425706001350
    • G. M. Foody and A. Mathur, The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM, Remote Sens. Environ., vol. 103, no. 2, pp. 179-189, Jul. 2006 (Pubitemid 44015803)
    • (2006) Remote Sensing of Environment , vol.103 , Issue.2 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 34
    • 0344445637 scopus 로고    scopus 로고
    • On the use of prior and posterior information in the subpixel proportion problem
    • Nov
    • E. D. Kolaczyk, On the use of prior and posterior information in the subpixel proportion problem, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 11, pp. 2687-2691, Nov. 2003
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.11 , pp. 2687-2691
    • Kolaczyk, E.D.1
  • 35
    • 4644345707 scopus 로고    scopus 로고
    • Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS
    • DOI 10.1016/j.landurbplan.2003.10.033, PII S0169204603002500
    • X. Li and A. G. O. Yeh, Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS, Landscape Urban Plan., vol. 69, no. 4, pp. 335-354, Oct. 2004 (Pubitemid 39282756)
    • (2004) Landscape and Urban Planning , vol.69 , Issue.4 , pp. 335-354
    • Li, X.1    Yeh, A.G.-O.2
  • 37
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods formulti-class support vector machines
    • Mar
    • C.W. Hsu and C. J. Lin, A comparison of methods formulti-class support vector machines, IEEE Trans. Neural Networ., vol. 13, no. 2, pp. 415- 425, Mar. 2002
    • (2002) IEEE Trans. Neural Networ , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 39
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge,MA: MIT Press
    • U. H. G. Kreel, Pairwise classification and support vector machines, in Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge,MA: MIT Press, 1999, pp. 255-268
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 255-268
    • Kreßel, U.H.G.1
  • 40
    • 31844444732 scopus 로고
    • Probabilistic approach for multiclass classification with neural networks
    • Jun
    • P. Refregier and F. Vallet, Probabilistic approach for multiclass classification with neural networks, in Proc. Int. Conf. Artif. Netw., Espoo, Finland, Jun. 1991, vol. 2, pp. 1003-1007
    • (1991) Proc. Int. Conf. Artif. Netw., Espoo, Finland , vol.2 , pp. 1003-1007
    • Refregier, P.1    Vallet, F.2
  • 41
    • 85153946716 scopus 로고    scopus 로고
    • Pairwise neural network classifiers with probabilistic outputs
    • G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press
    • D. Price, S. Knerr, L. Personnaz, and G. Dreyfus, Pairwise neural network classifiers with probabilistic outputs, in Neural Information Processing Systems, vol. 7, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press, pp. 1109-1116
    • Neural Information Processing Systems , vol.7 , pp. 1109-1116
    • Price, D.1    Knerr, S.2    Personnaz, L.3    Dreyfus, G.4
  • 42
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multiclass classification by pairwise coupling
    • Aug
    • T. F. Wu, C. J. Lin, and R. C. Weng, Probability estimates for multiclass classification by pairwise coupling, J. Mach. Learn. Res., vol. 5, pp. 975-1005, Aug. 2004
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 975-1005
    • Wu, T.F.1    Lin, C.J.2    Weng, R.C.3
  • 43
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • A. J. Smola, P L. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press
    • J. Platt, Probabilistic outputs for support vector machines and comparison to regularized likelihood methods, in Advances in Large Margin Classifiers, A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1
  • 45
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • DOI 10.1016/S0034-4257(01)00295-4, PII S0034425701002954
    • G. M. Foody, Status of land cover classification accuracy assessment, Remote Sens. Environ., vol. 80, no. 1, pp. 185-201, Apr. 2002 (Pubitemid 34271212)
    • (2002) Remote Sensing of Environment , vol.80 , Issue.1 , pp. 185-201
    • Foody, G.M.1
  • 46
    • 1242344016 scopus 로고    scopus 로고
    • Detecting important categorical land changes while accounting for persistence
    • DOI 10.1016/j.agee.2003.09.008
    • R. G. Pontius, E. Shusas, and M. McEachern, Detecting important categorical land change while accounting for persistence, Agriculture Ecosyst. Environ., vol. 101, no. 2/3, pp. 251-268, Feb. 2004 (Pubitemid 38215234)
    • (2004) Agriculture, Ecosystems and Environment , vol.101 , Issue.2-3 , pp. 251-268
    • Pontius Jr., R.G.1    Shusas, E.2    McEachern, M.3
  • 47
    • 30844456449 scopus 로고    scopus 로고
    • On the use of dimensioned measures of error to evaluate the performance of spatial interpolators
    • DOI 10.1080/13658810500286976, PII Q10X90565550
    • C. J. Willmott and K. Matsuura, On the use of dimensioned measures of error to evaluate the performance of spatial interpolators, Int. J. Geograph. Inf. Sci., vol. 20, no. 1, pp. 89-102, 2006 (Pubitemid 43102114)
    • (2006) International Journal of Geographical Information Science , vol.20 , Issue.1 , pp. 89-102
    • Willmott, C.J.1    Matsuura, K.2
  • 48
    • 30844437069 scopus 로고    scopus 로고
    • A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions
    • P. G. Pontius and M. L. Cheuk, A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions, Int. J. Geographic Inf. Sci., vol. 20, no. 1-30, 2006
    • (2006) Int. J. Geographic Inf. Sci , vol.20 , Issue.1-30
    • Pontius, P.G.1    Cheuk, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.