메뉴 건너뛰기




Volumn 45, Issue 3, 2012, Pages 1035-1049

Efficient semi-supervised learning on locally informative multiple graphs

Author keywords

EM (Expectation Maximization) algorithm; Graph integration; Label propagation; Semi supervised learning; Soft spectral clustering

Indexed keywords

EM (EXPECTATION MAXIMIZATION) ALGORITHM; GRAPH INTEGRATION; LABEL PROPAGATION; SEMI-SUPERVISED LEARNING; SPECTRAL CLUSTERING;

EID: 80055017471     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.08.020     Document Type: Article
Times cited : (18)

References (31)
  • 1
    • 25144481906 scopus 로고    scopus 로고
    • Semi-supervised protein classification using cluster kernels
    • DOI 10.1093/bioinformatics/bti497
    • J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W.S. Noble Semi-supervised protein classification using cluster kernels Bioinformatics 21 15 2005 3241 3247 (Pubitemid 41418437)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3241-3247
    • Weston, J.1    Leslie, C.2    Le, E.3    Zhou, D.4    Elisseeff, A.5    Noble, W.S.6
  • 2
    • 39549089484 scopus 로고    scopus 로고
    • Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
    • DOI 10.1109/TPAMI.2007.70710
    • A. Fujino, N. Ueda, and K. Saito Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle IEEE Transactions on Pattern Analysis and Machine Intelligence 30 3 2008 424 437 (Pubitemid 351280050)
    • (2008) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.30 , Issue.3 , pp. 424-437
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 3
    • 78649330593 scopus 로고    scopus 로고
    • Efficient region-aware large graph construction towards scalable multi-label propagation
    • B.-K. Bao, B. Nia, Y. Mua, and S. Yana Efficient region-aware large graph construction towards scalable multi-label propagation Pattern Recognition 44 3 2011 598 606
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 598-606
    • Bao, B.-K.1    Nia, B.2    Mua, Y.3    Yana, S.4
  • 5
    • 58149202361 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: A kernel approach
    • B. Kulis, S. Basu, I.S. Dhillon, and R.J. Mooney Semi-supervised graph clustering: a kernel approach Machine Learning 74 1 2009 1 22
    • (2009) Machine Learning , vol.74 , Issue.1 , pp. 1-22
    • Kulis, B.1    Basu, S.2    Dhillon, I.S.3    Mooney, R.J.4
  • 6
    • 74449083176 scopus 로고    scopus 로고
    • Semi-supervised clustering with metric learning: An adaptive kernel method
    • X. Yin, S. Chen, E. Hu, and D. Zhang Semi-supervised clustering with metric learning: an adaptive kernel method Pattern Recognition 43 4 2010 1320 1333
    • (2010) Pattern Recognition , vol.43 , Issue.4 , pp. 1320-1333
    • Yin, X.1    Chen, S.2    Hu, E.3    Zhang, D.4
  • 7
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • I. Lee, S. Date, A. Adai, and E. Marcotte A probabilistic functional network of yeast genes Science 306 5701 2004 1555
    • (2004) Science , vol.306 , Issue.5701 , pp. 1555
    • Lee, I.1    Date, S.2    Adai, A.3    Marcotte, E.4
  • 8
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • K. Tsuda, H. Shin, and B. Schölkopf Fast protein classification with multiple networks Bioinformatics 21 2 2005 59 65
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 59-65
    • Tsuda, K.1    Shin, H.2    Schölkopf, B.3
  • 9
    • 34547840226 scopus 로고    scopus 로고
    • Annotating gene function by combining expression data with a modular gene network
    • M. Shiga, I. Takigawa, and H. Mamitsuka Annotating gene function by combining expression data with a modular gene network Bioinformatics 23 13 2007 i468 i478
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Shiga, M.1    Takigawa, I.2    Mamitsuka, H.3
  • 13
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
    • S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function Genome Biology 9 Suppl 1 2008 S4
    • (2008) Genome Biology , vol.9 , Issue.SUPPL 1 , pp. 4
    • Mostafavi, S.1    Ray, D.2    Warde-Farley, D.3    Grouios, C.4    Morris, Q.5
  • 15
    • 33749580724 scopus 로고    scopus 로고
    • Linear prediction models with graph regularization for Web-page categorization
    • KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • T. Zhang, A. Popescul, and B. Dom Linear prediction models with graph regularization for web-page categorization Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2006 ACM New York, NY, USA 821 826 (Pubitemid 44535597)
    • (2006) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , vol.2006 , pp. 821-826
    • Zhang, T.1    Popescul, A.2    Dom, B.3
  • 24
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • DOI 10.1016/j.patcog.2007.05.018, PII S0031320307002580
    • M. Filippone, F. Camastra, F. Masulli, and S. Rovetta A survey of kernel and spectral methods for clustering Pattern Recognition 41 1 2008 176 190 (Pubitemid 47284212)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 28
    • 9444285502 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • Learning Theory and Kernel Machines
    • A.J. Smola, and R.I. Kondor Kernels and regularization on graphs Proceedings of the 16th Annual Conference on Computational Learning Theory 2003 144 158 (Pubitemid 37053201)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 144-158
    • Smola, A.J.1    Kondor, R.2
  • 29
    • 0003562954 scopus 로고    scopus 로고
    • A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems
    • DOI 10.1023/A:1010920819831
    • D.J. Hand, and R.J. Till A simple generalization of the area under the ROC curve for multiple class classification problems Machine Learning 45 2001 171 186 (Pubitemid 33635984)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 30
    • 33748466311 scopus 로고    scopus 로고
    • Selecting features in microarray classification using ROC curves
    • DOI 10.1016/j.patcog.2006.07.010, PII S0031320306003426, Bioinformatics
    • H. Mamitsuka Selecting features in microarray classification using ROC curves Pattern Recognition 39 12 2006 2393 2404 10.1016/j.patcog.2006.07.010 (Pubitemid 44349151)
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2393-2404
    • Mamitsuka, H.1
  • 31
    • 13444306676 scopus 로고    scopus 로고
    • CYGD: The comprehensive yeast genome database
    • Database issue
    • U. Güldener CYGD: the comprehensive yeast genome database Nucleic Acids Research 33 Database issue 2005 D364 D368
    • (2005) Nucleic Acids Research , vol.33
    • Güldener, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.