메뉴 건너뛰기




Volumn 81, Issue 5, 2010, Pages

Foundation of fractional Langevin equation: Harmonization of a many-body problem

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICAL EQUATION; FIRST-PRINCIPLES; INTERACTION POTENTIALS; LANGEVIN EQUATION; MANY-BODY PROBLEMS; MANY-PARTICLE SYSTEMS; MICROSCOPIC DESCRIPTION; PHENOMENOLOGICAL MODELS; SINGLE-PARTICLE EQUATIONS; STOCHASTIC FRAMEWORK; TRACER PARTICLE;

EID: 77952338160     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.81.051118     Document Type: Article
Times cited : (165)

References (55)
  • 1
    • 0002214237 scopus 로고    scopus 로고
    • 10.1016/S0370-1573(98)00006-4
    • B. Derrida, Phys. Rep. 301, 65 (1998). 10.1016/S0370-1573(98)00006-4
    • (1998) Phys. Rep. , vol.301 , pp. 65
    • Derrida, B.1
  • 3
    • 36049056976 scopus 로고
    • 10.1103/PhysRev.144.251
    • J. L. Lebowitz and J. K. Percus, Phys. Rev. 144, 251 (1966). 10.1103/PhysRev.144.251
    • (1966) Phys. Rev. , vol.144 , pp. 251
    • Lebowitz, J.L.1    Percus, J.K.2
  • 4
    • 0000697135 scopus 로고
    • 10.1103/PhysRevA.9.557
    • J. K. Percus, Phys. Rev. A 9, 557 (1974). 10.1103/PhysRevA.9.557
    • (1974) Phys. Rev. A , vol.9 , pp. 557
    • Percus, J.K.1
  • 6
  • 7
    • 4243562125 scopus 로고
    • 10.1088/0022-3719/13/13/001
    • M. Buttiker and R. Landauer, J. Phys. C 13, L325 (1980). 10.1088/0022-3719/13/13/001
    • (1980) J. Phys. C , vol.13 , pp. 325
    • Buttiker, M.1    Landauer, R.2
  • 9
    • 27744475701 scopus 로고    scopus 로고
    • 10.1529/biophysj.104.051078
    • D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005). 10.1529/biophysj.104.051078
    • (2005) Biophys. J. , vol.89 , pp. 2960
    • Banks, D.S.1    Fradin, C.2
  • 10
    • 33644885029 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.098102
    • I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006). 10.1103/PhysRevLett.96.098102
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 098102
    • Golding, I.1    Cox, E.C.2
  • 12
    • 0000060097 scopus 로고
    • 10.1103/PhysRevA.8.3050
    • D. G. Levitt, Phys. Rev. A 8, 3050 (1973). 10.1103/PhysRevA.8.3050
    • (1973) Phys. Rev. A , vol.8 , pp. 3050
    • Levitt, D.G.1
  • 14
    • 0037934538 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.90.180602
    • M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003). 10.1103/PhysRevLett.90. 180602
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 180602
    • Kollmann, M.1
  • 15
    • 44149102183 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.100.200601
    • L. Lizana and T. Ambjörnsson, Phys. Rev. Lett. 100, 200601 (2008). 10.1103/PhysRevLett.100.200601
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 200601
    • Lizana, L.1    Ambjörnsson, T.2
  • 16
    • 77952418028 scopus 로고    scopus 로고
    • /2 behavior of the MSD. Without interactions with the heat bath the MSD would grow as t in a one-dimensional hard rod system
    • / 2 behavior of the MSD. Without interactions with the heat bath the MSD would grow as t in a one-dimensional hard rod system
  • 17
    • 0004778507 scopus 로고
    • [, 10.1063/1.1704288;
    • [D. Jepsen, J. Math. Phys. 6, 405 (1965) 10.1063/1.1704288
    • (1965) J. Math. Phys. , vol.6 , pp. 405
    • Jepsen, D.1
  • 18
    • 36049053567 scopus 로고
    • 10.1103/PhysRev.155.122
    • J. Lebowitz and J. Percus, Phys. Rev. 155, 122 (1967)]. 10.1103/PhysRev.155.122
    • (1967) Phys. Rev. , vol.155 , pp. 122
    • Lebowitz, J.1    Percus, J.2
  • 20
  • 27
    • 0035509430 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.64.051106
    • E. Lutz, Phys. Rev. E 64, 051106 (2001). 10.1103/PhysRevE.64.051106
    • (2001) Phys. Rev. e , vol.64 , pp. 051106
    • Lutz, E.1
  • 28
    • 19744382497 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.93.180603
    • S. C. Kou and X. S. Xie, Phys. Rev. Lett. 93, 180603 (2004). 10.1103/PhysRevLett.93.180603
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 180603
    • Kou, S.C.1    Xie, X.S.2
  • 29
    • 40849121133 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.100.070601
    • S. Burov and E. Barkai, Phys. Rev. Lett. 100, 070601 (2008). 10.1103/PhysRevLett.100.070601
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 070601
    • Burov, S.1    Barkai, E.2
  • 30
    • 70449103071 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.80.046125
    • I. Goychuk, Phys. Rev. E 80, 046125 (2009). 10.1103/PhysRevE.80.046125
    • (2009) Phys. Rev. e , vol.80 , pp. 046125
    • Goychuk, I.1
  • 32
    • 61349084902 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.102.050602
    • E. Barkai and R. Silbey, Phys. Rev. Lett. 102, 050602 (2009); 10.1103/PhysRevLett.102.050602
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 050602
    • Barkai, E.1    Silbey, R.2
  • 33
    • 77951550480 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.81.041129
    • E. Barkai and R. Silbey, Phys. Rev. E 81, 041129 (2010). 10.1103/PhysRevE.81.041129
    • (2010) Phys. Rev. e , vol.81 , pp. 041129
    • Barkai, E.1    Silbey, R.2
  • 34
    • 77952392346 scopus 로고    scopus 로고
    • Long-ranged interactions yielding nonextensive behavior, e.g., an unscreened Coulomb potential, are omitted.
    • Long-ranged interactions yielding nonextensive behavior, e.g., an unscreened Coulomb potential, are omitted.
  • 36
    • 77952401787 scopus 로고    scopus 로고
    • The probability density function (PDF) for the particle is Gaussian due to the Gaussian nature of the noise and linearity of Eq. . This behavior corresponds to fractional Brownian motion
    • The probability density function (PDF) for the particle is Gaussian due to the Gaussian nature of the noise and linearity of Eq.. This behavior corresponds to fractional Brownian motion
  • 38
    • 77952368021 scopus 로고    scopus 로고
    • and contrasts anomalous diffusion governed by a fractional Fokker-Planck equation where the (PDF) asymptotically is a stretched Gaussian
    • and contrasts anomalous diffusion governed by a fractional Fokker-Planck equation where the (PDF) asymptotically is a stretched Gaussian
  • 39
    • 0002641421 scopus 로고    scopus 로고
    • [, 10.1016/S0370-1573(00)00070-3
    • [R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000)]. 10.1016/S0370-1573(00)00070-3
    • (2000) Phys. Rep. , vol.339 , pp. 1
    • Metzler, R.1    Klafter, J.2
  • 40
    • 0001211978 scopus 로고
    • 10.1103/PhysRevB.18.2011
    • S. Alexander and P. Pincus, Phys. Rev. B 18, 2011 (1978). 10.1103/PhysRevB.18.2011
    • (1978) Phys. Rev. B , vol.18 , pp. 2011
    • Alexander, S.1    Pincus, P.2
  • 41
    • 0001931487 scopus 로고
    • 10.1103/PhysRevB.17.40
    • P. A. Fedders, Phys. Rev. B 17, 40 (1978). 10.1103/PhysRevB.17.40
    • (1978) Phys. Rev. B , vol.17 , pp. 40
    • Fedders, P.A.1
  • 42
    • 50249110581 scopus 로고    scopus 로고
    • 10.1007/s10955-008-9595-y
    • P. Gonçalves and M. Jara, J. Stat. Phys. 132, 1135 (2008). 10.1007/s10955-008-9595-y
    • (2008) J. Stat. Phys. , vol.132 , pp. 1135
    • Gonçalves, P.1    Jara, M.2
  • 43
    • 77952384669 scopus 로고    scopus 로고
    • See Eqs (23) and (48) of
    • See Eqs (23) and (48) of
  • 45
    • 77952330633 scopus 로고    scopus 로고
    • We point out that the case with thermal (equilibrium) initial conditions corresponds to using a Fourier transform in time. However, our Laplace analysis in time domain is more general and allows studies of other types of initial distributions.
    • We point out that the case with thermal (equilibrium) initial conditions corresponds to using a Fourier transform in time. However, our Laplace analysis in time domain is more general and allows studies of other types of initial distributions.
  • 46
    • 77952385191 scopus 로고    scopus 로고
    • ′.
    • ′.
  • 47
    • 57049115903 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.78.051116
    • A. Taloni and M. A. Lomholt, Phys. Rev. E 78, 051116 (2008). 10.1103/PhysRevE.78.051116
    • (2008) Phys. Rev. e , vol.78 , pp. 051116
    • Taloni, A.1    Lomholt, M.A.2
  • 48
    • 33847327575 scopus 로고
    • 10.1088/0034-4885/29/1/306
    • R. Kubo, Rep. Prog. Phys. 29, 255 (1966). 10.1088/0034-4885/29/1/306
    • (1966) Rep. Prog. Phys. , vol.29 , pp. 255
    • Kubo, R.1
  • 50
    • 51849083802 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.78.031112
    • S. Burov and E. Barkai, Phys. Rev. E 78, 031112 (2008). 10.1103/PhysRevE.78.031112
    • (2008) Phys. Rev. e , vol.78 , pp. 031112
    • Burov, S.1    Barkai, E.2
  • 52
    • 27144546670 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.95.098106
    • R. Granek and J. Klafter, Phys. Rev. Lett. 95, 098106 (2005). 10.1103/PhysRevLett.95.098106
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 098106
    • Granek, R.1    Klafter, J.2
  • 53
    • 0347975171 scopus 로고    scopus 로고
    • 10.1023/B:JOSS.0000003113.22621.f0
    • R. Kupferman, J. Stat. Phys. 114, 291 (2004). 10.1023/B:JOSS.0000003113. 22621.f0
    • (2004) J. Stat. Phys. , vol.114 , pp. 291
    • Kupferman, R.1
  • 54
    • 77952350238 scopus 로고    scopus 로고
    • For hard-core particles in higher dimensions the quasistatic approximation is expected to break down, at least for low particle densities since a tracer particle diffuses normally invalidating the above argument.
    • For hard-core particles in higher dimensions the quasistatic approximation is expected to break down, at least for low particle densities since a tracer particle diffuses normally invalidating the above argument.
  • 55
    • 77952414027 scopus 로고    scopus 로고
    • The compressibility of the particle system does not necessarily involve the compressibility of the medium between the particles. For instance, if the particles are embedded in water that can flow past the particles, then the statistical mechanical calculation of the compressibility of the particle system should involve water kept at a uniform chemical potential.
    • The compressibility of the particle system does not necessarily involve the compressibility of the medium between the particles. For instance, if the particles are embedded in water that can flow past the particles, then the statistical mechanical calculation of the compressibility of the particle system should involve water kept at a uniform chemical potential.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.