메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Handling missing data in software effort prediction with naive Bayes and em algorithm

Author keywords

EM algorithm; Missing data; Naive bayes

Indexed keywords

DATA SETS; EFFORT PREDICTION; EM ALGORITHMS; EXPECTATION MAXIMIZATION; GAUSSIAN COMPONENTS; IMPUTATION STRATEGY; IMPUTATION TECHNIQUES; MISSING DATA; MISSING DATA TOLERATION; MISSING VALUES; NAIVE BAYES; OPTIMAL LEVEL; PREDICTION MODEL; SOFTWARE EFFORT; SOFTWARE EFFORT PREDICTION; TRAINING DATA; UNLABELED DATA;

EID: 80054089117     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020390.2020394     Document Type: Conference Paper
Times cited : (28)

References (30)
  • 1
    • 0000254441 scopus 로고
    • Maximum likelihood estimates for multivariate normal distribution when some observations are missing
    • T. W. Anderson. Maximum likelihood estimates for multivariate normal distribution when some observations are missing. Journal of American Statistical Association, 52:200-203, 1957.
    • (1957) Journal of American Statistical Association , vol.52 , pp. 200-203
    • Anderson, T.W.1
  • 3
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in presence of incomplete data
    • G.A. Marcoulides and R.E. Schumacker, (eds.
    • J. Arbucle. Full information estimation in presence of incomplete data. In G.A. Marcoulides and R.E. Schumacker, (eds.) Advanced Structural Equation Modeling, Issues and Techniques, 1996.
    • (1996) Advanced Structural Equation Modeling, Issues and Techniques
    • Arbucle, J.1
  • 5
    • 0003909532 scopus 로고
    • Discriminatory analysis - Nonparametric discrimination: Small sample performance
    • USAF School of Aviation Medicine, Randolph Field, Texas
    • E. Fix and J. L. Hodges. Discriminatory analysis - nonparametric discrimination: small sample performance. Technical Report Project 21-49-004 (4), USAF School of Aviation Medicine, Randolph Field, Texas, 1951.
    • (1951) Technical Report Project 21-49-004 , Issue.4
    • Fix, E.1    Hodges, J.L.2
  • 8
    • 40749151020 scopus 로고    scopus 로고
    • A comprehensive empirical evaluation of missing value imputation in noisy software measurement data
    • J. V. Hulse and T. M. Khoshgoftaar. A comprehensive empirical evaluation of missing value imputation in noisy software measurement data. The Journal of Systems and Software, 81:691-708.
    • The Journal of Systems and Software , vol.81 , pp. 691-708
    • Hulse, J.V.1    Khoshgoftaar, T.M.2
  • 9
    • 57349173555 scopus 로고    scopus 로고
    • Imputation techniques for multivariate missingness in software measurement data
    • T. M. Khoshgoftaar and J. V. Hulse. Imputation techniques for multivariate missingness in software measurement data. Software Quality Journal, 16(4):563-600, 2008.
    • (2008) Software Quality Journal , vol.16 , Issue.4 , pp. 563-600
    • Khoshgoftaar, T.M.1    Hulse, J.V.2
  • 10
    • 57349173555 scopus 로고    scopus 로고
    • Software quality estimation with limited fault data: A semi-supervised learning perspective
    • T. M. Khoshgoftaar and J. V. Hulse. Software quality estimation with limited fault data: a semi-supervised learning perspective. Software Quality Journal, 16(4):563-600, 2008.
    • (2008) Software Quality Journal , vol.16 , Issue.4 , pp. 563-600
    • Khoshgoftaar, T.M.1    Hulse, J.V.2
  • 13
    • 58049200453 scopus 로고    scopus 로고
    • Bayesian network models for web effort prediction: A comparative study
    • E. Mendes and N. Mosley. Bayesian network models for web effort prediction: A comparative study. IEEE Transactions on Software Engineering, 34(6):723-736.
    • IEEE Transactions on Software Engineering , vol.34 , Issue.6 , pp. 723-736
    • Mendes, E.1    Mosley, N.2
  • 15
    • 73349092923 scopus 로고    scopus 로고
    • Missing data in software engineering
    • F. Shull et al. (eds.
    • A. Mockus. Missing data in software engineering. In F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering, pages 185-200, 2008.
    • (2008) Guide to Advanced Empirical Software Engineering , pp. 185-200
    • Mockus, A.1
  • 16
    • 0035506257 scopus 로고    scopus 로고
    • Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods
    • I. Myrtveit, E. Stensrud, and U. H. Olsson. Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods. IEEE Transactions on Software Engineering, 27(11):999-1013, 2001.
    • (2001) IEEE Transactions on Software Engineering , vol.27 , Issue.11 , pp. 999-1013
    • Myrtveit, I.1    Stensrud, E.2    Olsson, U.H.3
  • 17
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A. Mccallum, and T. Mitchell. Text classification from labeled and unlabeled documents using em. Machine Learning, 39(2):103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Mitchell, T.3
  • 18
    • 44949093510 scopus 로고    scopus 로고
    • An empirical validation of a neural network model for software effort estimation
    • H. Park and S. Baek. An empirical validation of a neural network model for software effort estimation. Expert Systems with Applications, 35:929-937, 2008.
    • (2008) Expert Systems with Applications , vol.35 , pp. 929-937
    • Park, H.1    Baek, S.2
  • 20
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.1
  • 21
    • 0003500248 scopus 로고
    • Morgan Kaufmann Publishers, Burlington, Massachusetts
    • J. Quinlan. Programs for Machine Learning. Morgan Kaufmann Publishers, Burlington, Massachusetts, 1993.
    • (1993) Programs for Machine Learning
    • Quinlan, J.1
  • 22
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J. L. Schafer and J. Graham. Missing data: Our view of the state of the art. Psychological Methods, 7(2):147-177, 2002.
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.2
  • 23
    • 34548214178 scopus 로고    scopus 로고
    • Software quality estimation with limited fault data: A semi-supervised learning perspective
    • N. Seliya and T. M. Khoshgoftaar. Software quality estimation with limited fault data: a semi-supervised learning perspective. Software Quality Journal, 15(3):327-344, 2007.
    • (2007) Software Quality Journal , vol.15 , Issue.3 , pp. 327-344
    • Seliya, N.1    Khoshgoftaar, T.M.2
  • 24
    • 33644682829 scopus 로고    scopus 로고
    • Categorical missing data imputation for software cost estimation by multinominal logistic regression
    • P. Sentas and L. Angelis. Categorical missing data imputation for software cost estimation by multinominal logistic regression. The Journal of Systems and Software, 79(3):404-414, 2006.
    • (2006) The Journal of Systems and Software , vol.79 , Issue.3 , pp. 404-414
    • Sentas, P.1    Angelis, L.2
  • 25
    • 33750994891 scopus 로고    scopus 로고
    • A new imputation method for small software project data sets
    • Q. Song and M. Shepperd. A new imputation method for small software project data sets. The Journal of Systems and Software, 80:51-62, 2007.
    • (2007) The Journal of Systems and Software , vol.80 , pp. 51-62
    • Song, Q.1    Shepperd, M.2
  • 26
    • 53949118951 scopus 로고    scopus 로고
    • Can k-nn imputation improve the performance of c4.5 with small software project data sets? a comparative evaluation
    • Q. Song and M. Shepperd. Can k-nn imputation improve the performance of c4.5 with small software project data sets? a comparative evaluation. The Journal of Systems and Software, 81:2361-2370, 2008.
    • (2008) The Journal of Systems and Software , vol.81 , pp. 2361-2370
    • Song, Q.1    Shepperd, M.2
  • 28
    • 3543055259 scopus 로고    scopus 로고
    • Machine learning and software engineering
    • D. Zhang and J.J.P.Tsai. Machine learning and software engineering. Software Quality Journal, 11:87-119, 2003.
    • (2003) Software Quality Journal , vol.11 , pp. 87-119
    • Zhang, D.1    Tsai, J.J.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.