메뉴 건너뛰기




Volumn 11, Issue 8, 2011, Pages 4798-4806

EEW-SC: Enhanced entropy-weighting subspace clustering for high dimensional gene expression data clustering analysis

Author keywords

Insensitive robustness distance; Clustering ensemble; Entropy weighting; Gene expression clustering analysis; Subspace clustering

Indexed keywords

CLUSTERING ANALYSIS; CLUSTERING ENSEMBLE; CLUSTERING METHODS; CLUSTERING PROCEDURE; CLUSTERING TECHNOLOGIES; ENTROPY WEIGHTING; EXPERIMENTAL STUDIES; GENE EXPRESSION CLUSTERING ANALYSIS; GENE EXPRESSION DATA; GENE EXPRESSION DATA CLUSTERING; GENE EXPRESSION DATASETS; HIGH-DIMENSIONAL; LEARNING RULES; OBJECTIVE FUNCTIONS; OPTIMIZATION OBJECTIVE FUNCTION; SUBSPACE CLUSTERING; TRADITIONAL CLUSTERING;

EID: 80053561639     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2011.07.002     Document Type: Article
Times cited : (26)

References (42)
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, and D. Gunopulos Automatic subspace clustering of high dimensional data for data mining applications Proc. ACM SIGMOD Int'l Conf. Management of Data 1998 94 105 (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 5
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • S. Armstrong, J.E. Staunton, and L.B. Silverman MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia Nature Genetics 30 2002 41 47
    • (2002) Nature Genetics , vol.30 , pp. 41-47
    • Armstrong, S.1    Staunton, J.E.2    Silverman, L.B.3
  • 8
    • 0036120047 scopus 로고    scopus 로고
    • Projective ART for clustering data sets in high dimensional spaces
    • PII S0893608001001083
    • Y. Cao, and J. Wu Projective ART for clustering data sets in high dimensional spaces Neural Networks 15 1 2002 105 120 (Pubitemid 34233604)
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 105-120
    • Cao, Y.1    Wu, J.2
  • 9
    • 0005287692 scopus 로고    scopus 로고
    • Local dimensionality reduction: A new approach to indexing high dimensional spaces
    • K. Chakrabarti, and S. Mehrotra Local dimensionality reduction: a new approach to indexing high dimensional spaces Proc.26th Int'l Conf. Very Large Data Bases 2000 89 100
    • (2000) Proc.26th Int'l Conf. Very Large Data Bases , pp. 89-100
    • Chakrabarti, K.1    Mehrotra, S.2
  • 10
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • DOI 10.1016/j.patcog.2003.11.003, PII S0031320303004035
    • Y. Chan, W.K. Ching, and M.K. Ng An optimization algorithm for clustering using weighted dissimilarity measures Pattern Recognition 37 5 2004 943 952 (Pubitemid 38473837)
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 943-952
    • Chan, E.Y.1    Ching, W.K.2    Ng, M.K.3    Huang, J.Z.4
  • 12
    • 33947177850 scopus 로고
    • Optimal variable weighting for ultrametric and additive tree clustering
    • G. De Soete Optimal variable weighting for ultrametric and additive tree clustering Quality and Quantity 20 1986 169 180
    • (1986) Quality and Quantity , vol.20 , pp. 169-180
    • De Soete, G.1
  • 17
    • 0242387333 scopus 로고    scopus 로고
    • Mafia: Efficient and scalable subspace clustering for very large data sets
    • Northwest Univ.
    • S. Goil, H. Nagesh, A. Choudhary. Mafia: efficient and scalable subspace clustering for very large data sets, Technical Report CPDC-TR-9906-010, Northwest Univ., 1999.
    • (1999) Technical Report CPDC-TR-9906-010
    • Goil, S.1    Nagesh, H.2    Choudhary, A.3
  • 18
    • 33749402881 scopus 로고    scopus 로고
    • A fuzzy subspace algorithm for clustering high dimensional data
    • G.J. Gan, J.H. Wu, and Z.J. Yang A fuzzy subspace algorithm for clustering high dimensional data ADMA 2006 271 278
    • (2006) ADMA , pp. 271-278
    • Gan, G.J.1    Wu, J.H.2    Yang, Z.J.3
  • 19
    • 38949102340 scopus 로고    scopus 로고
    • A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
    • G.J. Gan, and J.H. Wu A convergence theorem for the fuzzy subspace clustering (FSC) algorithm Pattern Recognition 41 6 2008 1939 1947
    • (2008) Pattern Recognition , vol.41 , Issue.6 , pp. 1939-1947
    • Gan, G.J.1    Wu, J.H.2
  • 20
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub, D.K. Slonim, and P. Tamayo Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286 5439 1999 531 537
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 24
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • DOI 10.1109/TKDE.2007.1048
    • L.P. Jing, M.K. Ng, and Z.X. Huang An Entropy Weighting K-means algorithm for subspace clustering of high-dimensional sparse data IEEE Transactions on Knowledge Data and Engineering 19 8 2007 1026 1041 (Pubitemid 47000341)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.8 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 25
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • PII S1064827595287997
    • G. Karypis, and V. Kumar A fast and high quality multilevel scheme for partitioning irregular graphs SIAM Journal on Scientific Computing 20 1998 359 392 (Pubitemid 128689516)
    • (1998) SIAM Journal of Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 26
    • 33244495420 scopus 로고    scopus 로고
    • Towards a robust clustering
    • J.M. Leski Towards a robust clustering Fuzzy Sets and Systems 137 2 2003 191 196
    • (2003) Fuzzy Sets and Systems , vol.137 , Issue.2 , pp. 191-196
    • Leski, J.M.1
  • 28
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A.Y. Ng, M. Jordan, and Y. Weiss On spectral clustering: analysis and an algorithm Proc. of NIPS-14 2001
    • (2001) Proc. of NIPS-14
    • Ng, A.Y.1    Jordan, M.2    Weiss, Y.3
  • 29
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons Subspace clustering for high dimensional data: a review SIFKDD Explorations 6 2004 90 105
    • (2004) SIFKDD Explorations , vol.6 , pp. 90-105
    • Parsons, L.1
  • 30
    • 0034680102 scopus 로고    scopus 로고
    • Molecular portraits of human breast tumours
    • C.M. Perou, T. Sørlie, and M.B. Eisen Molecular portraits of human breast tumours Nature 406 2000 747 752
    • (2000) Nature , vol.406 , pp. 747-752
    • Perou, C.M.1    Sørlie, T.2    Eisen, M.B.3
  • 36
    • 14644429109 scopus 로고    scopus 로고
    • A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests
    • DOI 10.1016/j.patrec.2004.09.016, PII S0167865504002405
    • K.L. Wu, J. Yu, and M.S. Yang A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests Pattern Recognition Letters 26 5 2005 639 652 (Pubitemid 40319628)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.5 , pp. 639-652
    • Wu, K.-L.1    Yu, J.2    Yang, M.-S.3
  • 39
    • 14644432442 scopus 로고    scopus 로고
    • Optimality test for generalized FCM and its application to parameter selection
    • DOI 10.1109/TFUZZ.2004.836065
    • J. Yu, and M.S. Yang Optimality test for generalized FCM and its application to parameter selection IEEE Transactions on Fuzzy Systems 13 1 2005 164 176 (Pubitemid 40319317)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.1 , pp. 164-176
    • Yu, J.1    Yang, M.-S.2
  • 40
    • 80053562811 scopus 로고    scopus 로고
    • Fuzzy variable selection with degree of classification based on dissimilarity between distributions of variables
    • S.M. MIka Fuzzy variable selection with degree of classification based on dissimilarity between distributions of variables International Journal of Intelligent Technology and Applied Statistics 1 2 2008 1 18
    • (2008) International Journal of Intelligent Technology and Applied Statistics , vol.1 , Issue.2 , pp. 1-18
    • Mika, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.