메뉴 건너뛰기




Volumn , Issue , 2007, Pages 783-800

Active learning for word sense disambiguation with methods for addressing the class imbalance problem

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; CLASS IMBALANCE PROBLEMS; IMBALANCE PROBLEM; LOWER BOUNDS; OVER SAMPLING; RESAMPLING TECHNIQUE; UNDER-SAMPLING; UPPER BOUND; WORD-SENSE DISAMBIGUATION;

EID: 80053363150     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (138)

References (52)
  • 1
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • A. L. Berger, S. A. Della, and V. J Della. 1996. A maximum entropy approach to natural language processing. Computational Linguistics 22(1):39-71.
    • (1996) Computational Linguistics , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.L.1    Della, S.A.2    Della, V.J.3
  • 3
    • 80053351041 scopus 로고    scopus 로고
    • Estimating class priors in domain adaptation
    • Y. S. Chan and H. T. Ng. 2006. Estimating class priors in domain adaptation. In Proc. of ACL06.
    • (2006) Proc. of ACL06
    • Chan, Y.S.1    Ng, H.T.2
  • 5
    • 84863352687 scopus 로고    scopus 로고
    • An empirical study of the behavior of active learning for word sense disambiguation
    • J. Chen, A. Schein, L. Ungar, M. Palmer. 2006. An empirical study of the behavior of active learning for word sense disambiguation. In Proc. of HLT-NAACL06.
    • (2006) Proc. of HLT-NAACL06
    • Chen, J.1    Schein, A.2    Ungar, L.3    Palmer, M.4
  • 7
    • 84859919972 scopus 로고    scopus 로고
    • The role of semantic roles in disambiguating verb senses
    • H. T. Dang and M. Palmer. 2005. The Role of Semantic Roles in Disambiguating Verb Senses. In Proc. of ACL'05.
    • (2005) Proc. of ACL'05
    • Dang, H.T.1    Palmer, M.2
  • 8
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data set
    • A. Estabrooks, T. Jo and N. Japkowicz. 2004. A multiple resampling method for learning from imbalanced data set. Computational Intelligence, 20(1):18-36.
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 12
    • 0002487107 scopus 로고    scopus 로고
    • Introduction to the special issue on word sense disambiguation: The state of the art
    • N. Ide and J. Veronis. 1998. Introduction to the special issue on word sense disambiguation: the state of the art. Computational Linguistics, 24(1):1-37.
    • (1998) Computational Linguistics , vol.24 , Issue.1 , pp. 1-37
    • Ide, N.1    Veronis, J.2
  • 13
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz and S. Stephen. 2002. The class imbalance problem: a systematic study. Intelligent Data Analysis, 6(5):429-450.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 14
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • T. Jo and N. Japkowicz. 2004. Class imbalances versus small disjuncts. SIGKSS Explorations, 6(1):40-49.
    • (2004) SIGKSS Explorations , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 15
    • 84859902160 scopus 로고    scopus 로고
    • Learning semantic classes for word sense disambiguation
    • U. S. Kohomban and W. S. Lee. 2005. Learning Semantic Classes for Word Sense Disambiguation. In Proc. of ACL'05.
    • (2005) Proc. of ACL'05
    • Kohomban, U.S.1    Lee, W.S.2
  • 16
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin. 1997. Addressing the curse of imbalanced training sets: one-sided selection. In Proc. of ICML97.
    • (1997) Proc. of ICML97
    • Kubat, M.1    Matwin, S.2
  • 17
    • 85134472546 scopus 로고    scopus 로고
    • An empirical evaluation of knowledge sources and learning algorithm for word sense disambiguation
    • Y.K. Lee and H.T. Ng. 2002. An empirical evaluation of knowledge sources and learning algorithm for word sense disambiguation. In Proc. of EMNLP-2002.
    • (2002) Proc. of EMNLP-2002
    • Lee, Y.K.1    Ng, H.T.2
  • 18
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • D. D. Lewis and W. A. Gale. 1994. A sequential algorithm for training text classifiers. In Proc. of SIGIR-94.
    • (1994) Proc. of SIGIR-94
    • Lewis, D.D.1    Gale, W.A.2
  • 19
    • 85124125604 scopus 로고
    • Heterogeneous uncertainty sampling for supervised learning
    • D.D. Lewis and J. Catlett. 1994. Heterogeneous uncertainty sampling for supervised learning. In Proc. of ICML94.
    • (1994) Proc. of ICML94
    • Lewis, D.D.1    Catlett, J.2
  • 20
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The Penn Treebank
    • M. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993. Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics, 19(2):313-330.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.1    Santorini, B.2    Marcinkiewicz, M.A.3
  • 25
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity-problems and solutions: A unifying framework
    • G. M. Weiss. 2004. Mining with rarity - problems and solutions: a unifying framework. SIGKDD Explorations, 6(1):7-19.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 26
    • 80053345073 scopus 로고    scopus 로고
    • Aligning features with sense distinction dimensions
    • N. Xue, J. Chen and M. Palmer. 2006. Aligning Features with Sense Distinction Dimensions. In Proc. of ACL'06.
    • (2006) Proc. of ACL'06
    • Xue, N.1    Chen, J.2    Palmer, M.3
  • 27
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • DOI 10.1109/TKDE.2006.17
    • Z. Zhou, X. Liu. 2006. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18(1):63-77. (Pubitemid 43145089)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 28
    • 12744250266 scopus 로고    scopus 로고
    • An evaluation of statistical spam filtering techniques
    • DOI 10.1145/1039621.1039625, Computer Processing of Oriental Languages
    • L. Zhang, J. Zhu, and T. Yao. 2004. An evaluation of statistical spam filtering techniques. ACM Transactions on Asian Language Information Processing, 3(4):243-269. (Pubitemid 40155221)
    • (2004) ACM Transactions on Asian Language Information Processing , vol.3 , Issue.4 , pp. 243-269
    • Zhang, L.E.1    Zhu, J.2    Yao, T.3
  • 29
    • 0036613407 scopus 로고    scopus 로고
    • An active learning framework for content-based information retrieval
    • C. Zhang and T. Chen. 2002. An active learning framework for content-based information retrieval. IEEE Transactions on Multimedia, 4(2):260-268.
    • (2002) IEEE Transactions on Multimedia , vol.4 , Issue.2 , pp. 260-268
    • Zhang, C.1    Chen, T.2
  • 30
    • 33749256006 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Y. Altun, D. McAllester, and M. Belkin. 2005. Maximum Margin Semi-Supervised Learning for Structured Variables. In Proc. of NIPS*2005.
    • (2005) Proc. of NIPS*2005
    • Altun, Y.1    McAllester, D.2    Belkin, M.3
  • 31
    • 84859921107 scopus 로고    scopus 로고
    • A high-performance semi-supervised learning method for text chunking
    • R. Ando and T. Zhang. 2005. A High-Performance Semi-Supervised Learning Method for Text Chunking. In Proc. of ACL-2005, pages 1-9.
    • (2005) Proc. of ACL-2005 , pp. 1-9
    • Ando, R.1    Zhang, T.2
  • 32
    • 33749237544 scopus 로고    scopus 로고
    • Semi-supervised learning for structured output variables
    • U. Brefeld and T. Scheffer. 2006. Semi-Supervised Learning for Structured Output Variables. In Proc. of ICML-2006.
    • (2006) Proc. of ICML-2006
    • Brefeld, U.1    Scheffer, T.2
  • 33
    • 84978165199 scopus 로고    scopus 로고
    • Named entity recognition with a maximum entropy approach
    • H. L. Chieu and Hwee T. Ng. 2003. Named Entity Recognition with a Maximum Entropy Approach. In Proc. of CoNLL-2003, pages 160-163.
    • (2003) Proc. of CoNLL-2003 , pp. 160-163
    • Chieu, H.L.1    Ng, H.T.2
  • 36
    • 29344468051 scopus 로고    scopus 로고
    • A hybrid generative/discriminative approach to semi-supervised classifier design
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • A. Fujino, N. Ueda, and K. Saito. 2005. A Hybrid Generative/ Discriminative Approach to Semi-Supervised Classifier Design. In Proc. of AAAI-05, pages 764- 769. (Pubitemid 43006701)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 764-769
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 37
    • 84898928156 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Y. Grandvalet and Y. Bengio. 2004. Semi-Supervised Learning by Entropy Minimization. In Proc. of NIPS*2004, pages 529-536.
    • (2004) Proc. of NIPS*2004 , pp. 529-536
    • Grandvalet, Y.1    Bengio, Y.2
  • 38
    • 84860537772 scopus 로고    scopus 로고
    • Semi-supervised conditional random fields for improved sequence segmentation and labeling
    • F. Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schuurmans. 2006. Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and Labeling. In Proc. of COLING/ACL-2006, pages 209- 216.
    • (2006) Proc. of COLING/ACL-2006 , pp. 209-216
    • Jiao, F.1    Wang, S.2    Lee, C.-H.3    Greiner, R.4    Schuurmans, D.5
  • 39
    • 80053222535 scopus 로고    scopus 로고
    • Chunking with support vector machines
    • T. Kudo and Y. Matsumoto. 2001. Chunking with Support Vector Machines. In Proc. of NAACL 2001, pages 192-199.
    • (2001) Proc. of NAACL 2001 , pp. 192-199
    • Kudo, T.1    Matsumoto, Y.2
  • 40
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proc. of ICML-2001, pages 282-289.
    • (2001) Proc. of ICML-2001 , pp. 282-289
    • Lafferty, J.1    Mccallum, A.2    Pereira, F.3
  • 41
    • 29244455873 scopus 로고    scopus 로고
    • Semi-supervised sequence modeling with syntactic topic models
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • W. Li and A. McCallum. 2005. Semi-Supervised Sequence Modeling with Syntactic Topic Models. In Proc. of AAAI-2005, pages 813-818. (Pubitemid 43006709)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 813-818
    • Li, W.1    McCallum, A.2
  • 42
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. Liu and J. Nocedal. 1989. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Programming, Ser. B, 45(3):503-528. (Pubitemid 20660315)
    • (1989) Mathematical Programming, Series B , vol.45 , Issue.3 , pp. 503-528
    • Liu Dong, C.1    Nocedal Jorge2
  • 43
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. 2000. Text Classification from Labeled and Unlabeled Documents using EM. Machine Learning, 39:103- 134. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 45
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • F. Sha and F. Pereira. 2003. Shallow Parsing with Conditional Random Fields. In Proc. of HLT/NAACL-2003, pages 213-220.
    • (2003) Proc. of HLT/NAACL-2003 , pp. 213-220
    • Sha, F.1    Pereira, F.2
  • 46
    • 33645977859 scopus 로고    scopus 로고
    • Logarithmic opinion Pools for conditional random fields
    • A. Smith, T. Cohn, and M. Osborne. 2005. Logarithmic Opinion Pools for Conditional Random Fields. In Proc. of ACL-2005, pages 10-17.
    • (2005) Proc. of ACL-2005 , pp. 10-17
    • Smith, A.1    Cohn, T.2    Osborne, M.3
  • 47
    • 65449165936 scopus 로고    scopus 로고
    • Reducing weight under training in structured discriminative learning
    • C. Sutton, M. Sindelar, and A. McCallum. 2006. Reducing Weight Under training in Structured Discriminative Learning. In Proc. of HTL-NAACL 2006, pages 89-95.
    • (2006) Proc. of HTL-NAACL 2006 , pp. 89-95
    • Sutton, C.1    Sindelar, M.2    McCallum, A.3
  • 48
    • 84860500490 scopus 로고    scopus 로고
    • Training conditional random fields with multivariate evaluation measure
    • J. Suzuki, E. McDermott, and H. Isozoki. 2006. Training Conditional Random Fields with Multivariate Evaluation Measure. In Proc. of COLING/ACL-2006, pages 217-224.
    • (2006) Proc. of COLING/ACL-2006 , pp. 217-224
    • Suzuki, J.1    McDermott, E.2    Isozoki, H.3
  • 50
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2003 shared task: Language- independent named entity recognition
    • E. T. Tjong Kim Sang and F. De Meulder. 2003. Introduction to the CoNLL-2003 Shared Task: Language- Independent Named Entity Recognition. In Proc. of CoNLL-2003, pages 142-147.
    • (2003) Proc. of CoNLL-2003 , pp. 142-147
    • Tjong Kim Sang, E.T.1    De Meulder, F.2
  • 51
    • 0347617360 scopus 로고    scopus 로고
    • Text Chunking based on a Generalization of Winnow
    • DOI 10.1162/153244302320884560
    • T. Zhang, F. Damerau, and D. Johnson. 2002. Text Chunking based on a Generalization of Winnow. Machine Learning Research, 2:615-637. (Pubitemid 135712575)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.4 , pp. 615-637
    • Zhang, T.1    Damerau, F.2    Johnson, D.3
  • 52
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. 2003. Semi- Supervised Learning using Gaussian Fields and Harmonic Functions. In Proc.of ICML-2003, pages 912- 919.
    • (2003) Proc.of ICML-2003 , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.